区间图着色问题

本文探讨了区间图着色问题,通过证明问题的最优子结构性质,阐述了如何使用贪心算法解决该问题。文章介绍了活动选择的递归实现,通过不断选取最大兼容的集合进行着色,以达到最少颜色数的目标。
摘要由CSDN通过智能技术生成

一、题目

    我们可以做出一个区间图,其顶点为已知的活动,其边连接着不兼容的活动。为了使两个不兼容的节点颜色不同,所需的最少颜色数是多少?

 

二、用贪心算法解决这个问题需要几个步骤。

    1、证明问题的最优子结构性质。

    如果有一个方案使用了最少的颜色(不包括最后一个颜色),那么去除这个颜色所包含的活动,剩余部分对应的颜色方案也一定使用了最少的颜色。如果不是,那么可以用新的使用更少颜色的方案来替代原方案,则在原问题上产生一个新的最少颜色数的方案,这样的结果和原来的假设矛盾。

    同时也可以证明:

   如果一个方案使用了最少的颜色(不包括最后一个颜色),那么在其一个颜色所包含的兼容子集中,必定包含使用最多集合的一个方案

 

    证明:

        如果集合C是一个使用最多集合的方案,并且它不在最少颜色的方案P中,那么方案就包括了一个比C小的集合B.假设E=C-B 那么可以P-B的集合中在减掉E并且 这个集合也具有最少的颜色数.所以假设成立.

 

    2、设计一个递归解。

    这里不知道怎么分析,请高手指教

 

    3、贪心解

从1的分析可知,这个问题就是每次从集合中取出一个最大兼容的集合,所以就可以采用活动先择的方案解决这个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值