数字图像处理 预处理 图像增强

本文总结了数字图像预处理的重要性,包括预处理的目的和步骤,重点介绍了图像增强技术。直方图均衡化和对比度拉伸是增强图像的有效方法,通过`histeq`和`imadjust`函数实现。滤波法中,均值滤波和中值滤波常用于消除噪声,而锐化滤波则用于增强边缘。文中提供了MATLAB代码示例,展示了巴特沃斯低通和高通滤波、高斯滤波以及使用sobel、prewitt算子的锐化效果。
摘要由CSDN通过智能技术生成

学习了数字图像图像处理一段时间,下面是我对预处理方面的一些总结。

首先,了解了预处理对数字图像有什么影响?

预处理的主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进特征抽取、图像分割、匹配和识别的可靠性。预处理过程一般有数字化、几何变换、归一化、平滑、复原和增强等步骤。下面是我对图像增强的总结。

图像增强有很多种方法,针对不同图像要采取不同的方法,直方图均衡化、对比度拉伸是常用到的方法,使灰度图像颜色更加分明,针对含有噪声的图像。可以采用滤波,包含平滑滤波和锐化滤波。

一、直方图处理

1、直方图均衡化

直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。

它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像原取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。直方图均衡化是一种对图像的非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

       函数:histeq

实现代码如下:I=imread('2.jpg');
           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值