TensorFlow 学习
Icoding_F2014
相信代码可以变化世界
展开
-
Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
莫名其妙的报错:in tensorflow/stream_executor/cuda/cuda_dnn.cc(953): ‘cudnnSetDropoutDescriptor( handle.get(), cudnn.handle(), dropout, state_memory.opaque(), state_memory.size(), seed)’解决方法:在创建session的时候 加上config。config = tf.ConfigProto() config.gpu_options.原创 2021-05-21 09:44:47 · 300 阅读 · 0 评论 -
Keras获取中间层输出
其中,self里面有三个对象:keras compile出来的图,self.model。model对应的图 self.graph,model所在的会话 self.session。 def get_feature_map(self,X,layer_name='block1_conv1'): ''' 获取特定中间层的特征图 :param X: 输入数据 :param layer_name: 层的名字,str :re原创 2020-11-11 11:18:39 · 593 阅读 · 0 评论 -
tf.contrib.seq2seq.dynamic_decode 返回值的shape 巨坑
tf.contrib.seq2seq.dynamic_decode 这个函数真的是巨坑啊,每一个batch,他的rnn_output的形状居然会是:[batch_size, max_efficient_sentence across entire batch, num_classes] ,而不是我们想要的每个序列应该有的最大长度,尽管我们在TrainingHelper里面指定了Sequence_...原创 2019-12-21 18:37:20 · 1407 阅读 · 0 评论 -
Tensorflow 同时载入多个模型
有时我们希望在一个python的文件空间同时载入多个模型,例如 我们建立了10个CNN模型,然后我们又写了一个预测类Predict,这个类会从已经保存好的模型restore恢复相应的图结构以及模型参数。然后我们会创建10个Predict的对象Instance,每个Instance负责一个模型的预测。 Predict的核心为:class Predict: def __init__(...原创 2017-12-13 16:46:25 · 19047 阅读 · 15 评论 -
BiLSTM+CRF (一)双向RNN 浅谈
引言为什么要使用双向的RNN? 一般的按序列顺序过来的RNN会记录、保存来自前面序列的信息,这些历史信息对当前的输出是很有帮助的。但是有些问题,序列当前位置历史信息和这个位置未来的信息会共同对计算当前位置的输出有帮助,例如在NLP里面的人名识别里面, 如果我们很确信下一个字符是人名的开始,那么当前位置再是人名的开始的概率就会相当的低。于是,我们就可以就想啊,能不能搞个子双向的RNN来,让模型...原创 2018-10-28 16:57:01 · 4068 阅读 · 0 评论 -
CNN——基于CNN的车牌号识别
PIL读取Image文件本例提供的训练集里面的每个图片都是20x20 的二值化后的灰度图,例如:因此,我们需要使用PIL库或opencv库把灰度图转换为我们方便处理的数据形式。本人是先转化为list of list.picReader.py__author__ = 'jmh081701'from PIL import Imagedef img2mat(img_filename):...原创 2019-04-01 17:35:38 · 26324 阅读 · 11 评论 -
GAN 生成对抗网络(一)
接下来将会有系列博客介绍GAN网络。生成模型与判别模型首先,需要搞清楚什么是生成模型,什么是判别模型。生成模型是指模型学习得到 给定数据集 上的一个联合分布。这里的随机变量是模型中所有可能的随机变量。举个例子来说,对于28x28的图片来说,生成模型会学习到28x28个像素组成的随机变量的联合分布。对于带标签的28x28的图片来说,生成模型会学习到28x28+1 个随机变量的联合分布。后续的...原创 2019-04-27 11:23:11 · 440 阅读 · 0 评论 -
再看Tensorflow 里面的Graph 和Session
前言今天深度学习课上老师着重讲了tensorflow里面的graph和Session的关系,这勾起了我的很多记忆,以前初学tensorflow的时候 那些概念都没有理解的很透彻,现在再来集中的总结一下。Graph在分布式系统中,人们经常使用计算图来表示并行计算模型。计算图是一个有向图,图里面有节点和有向边。在计算图里面,节点表示"计算"单元,有向边表示数据的流动关系或者依赖关系。不过在te...原创 2019-05-10 00:06:59 · 1205 阅读 · 0 评论 -
Tensorboard: AttributeError: module 'tensorboard.util' has no attribute 'Retrier'
Tensorboard 报错:AttributeError: module ‘tensorboard.util’ has no attribute ‘Retrier’原因:tensorboard与tensorflow版本不符合。解决方法:首先查看tensorflow的版本:pip list 例如,我的tensorflow版本是1.3.0然后在 https://github.com...原创 2019-06-13 10:55:49 · 3720 阅读 · 5 评论 -
windows 10 基于Tensorflow的街头行人检测实验
本实验并没有按照网上现有的千篇一律的指导书在linux上进行实验,而是尝试在Windows上进行本实验,并记录实验的详细过程。这一方面的资料在互联网上较少,也算是一个比较好的补充。一、实验步骤1、环境搭建1.1 安装Tensorflow 1.13.0pip3 install tensorflow --upgradepip3 install tensorflow-gpu --upgrad...原创 2019-07-12 20:14:43 · 5893 阅读 · 14 评论 -
Tensorflow 实践RNN(一)
本博客记录使用tensorflow搭建rnn模型并用来对mnist的手写体进行识别的过程,记录其中的学习过程。 实践环境: Tensorflow version: 1.3.0 python version: 3.5 1.RNN快速介绍: 图1如上图所示,其中x是输入,s旁边的圆圈是隐层,而o旁边的圆圈表示输出。左边是RNN的第一种表示,可以看到在隐层中存在闭环。右图则是原创 2017-12-16 18:14:41 · 28397 阅读 · 25 评论 -
Word Embedding 和Skip-Gram模型 的实践
什么是Word Embedding? word Embedding其实就是一个对词语进行向量化的高级方法。该方法对词语进行向量化后结果能够倾向于同类词语之间向量的距离会更小。例如在一堆预料中,I like apple和I like watermelon.经常出现,那么 apple 和watemelon向量化后两个向量的距离结果应该比apple和China两个向量之间距离小。原创 2017-10-30 18:18:52 · 1345 阅读 · 0 评论 -
机器学习、神经网络计算过程的矩阵化与向量化
为什么需要矩阵化向量化运算过程?numpy在内容实现的时候,对矩阵运行进行了优化,其速度飞快。如果我们使用的是原始的for循环也可以完成任务,但是频繁的使用for循环,将会大大的增加计算时间。 举个例子: 一个输入样本X由1000000个特征组成的行向量,现在想计算 的值。其中 那么有两种写法:import numpy as npimport timedef mod1(X):原创 2017-10-11 15:01:41 · 4853 阅读 · 0 评论 -
Tensorflow C++学习(二)
前言本节主要介绍(一)中的代码,了解如何使用C++创建图和tensor,并使用它们进行计算。代码// tensorflow/cc/example/example.cc#include "tensorflow/cc/client/client_session.h"#include "tensorflow/cc/ops/standard_ops.h"#include "tensorflow/core原创 2017-06-14 10:24:20 · 14622 阅读 · 1 评论 -
Tensorflow 基础
前言本文主要介绍学习tensorflow的一些基础知识,是tensorflow C++的基础,里面的样例使用的是python,后续将给出C++的示例。数据流图基础像计算机科学里面通用的数据流表示一样,在tensorflow的数据流图里面,使用节点和边来表示数据流的流动与各种操作。 节点:一般以圆圈/椭圆/方框表示,表示某种运算或操作。 边:有向边,对应于流入节点或从节点流出的数据,边的方向对应于原创 2017-08-02 17:00:07 · 818 阅读 · 0 评论 -
Tensorflow 基础(二)
Tensorflow 1.2 tensorflow里面的tensor在tensorflow 里面,所有的数据都是以张量tensor的形式存在的。张量其实就是n维矩阵的抽象。一维的张量是向量,二维的张量是矩阵。tensorflow的数据类型tensorflow 可接受python自带的数据类型Tensorflow可以接受python数值,布尔值,字符串或由它们构成的列表。单个数值将被转化为标量,数值原创 2017-08-03 00:06:55 · 1657 阅读 · 0 评论 -
CNN学习(三)—Tensorflow 进行MNIST手写体识别
前言本节,我们牛刀小试一下,使用Tensor的构建一个简单的六层CNN网络来对MNIST手写体数据集进行训练。网络结构:代码__author__ = 'jmh081701'#coding:utf-8import tensorflow as tfimport numpy as npimport pandas as pdfrom tensorflow.examples.tutorials.m原创 2017-09-04 13:09:34 · 1110 阅读 · 0 评论 -
python使用pandas读取数据文件
可以使用pandas来方便的读取csv文件,免去自己处理csv时的琐屑问题。安装sudo pip install pandas或者直接使用pycharm的Setting->Interpreter->Tool直接安装读取csv文件假设我们有如下的数据格式的tests.csv: ID Name Sex Age 1 amy male 12 2 ken female原创 2017-08-30 14:07:05 · 8065 阅读 · 0 评论 -
为什么Tensorflow需要使用"图计算"来表示计算过程
今天一个同学问我,在tensorflow里面是图? 我跟他说: (来自Andrew Ng,吴神) 就比如说 J=a+bc 吧 在图计算的表示中: 1.节点表示某种运算,一般都是二元运算 2.有向边,表示数据和数据的流向比如 上面的图中 有三个节点u=bc,v=a+u,J=3v 它们都在做运算。 而那些边就表示数据的流动。什么意思嘞? 比如 节点u=a+u,有两条边流进来,就说明啊原创 2017-09-26 01:16:33 · 5396 阅读 · 5 评论 -
Tensorflow:softmax处理Iris鸾尾花分类
经典的分类模型,鸾尾花的分类。 数据集样例: length sepal width petal length petal width class 5.1 3.5 1.4 0.2 Iris-setosa 4.9 3 1.4 0.2 Iris-versicolor 4.7 3.2 1.3 0.2 Iris-virginica原创 2017-09-02 11:13:18 · 3602 阅读 · 0 评论 -
CNN学习(一)
前言本系列文章介绍学习CNN的过程,并结合Tensorflow来使用CNN进行图像的识别CNN概述卷积神经网络是在普通的BP全连接的基础上发展而来的,CNN重点就为了解决BP全连接网络中因为网络权值参数过多而导致的无法训练的问题,CNN提出的局部连接、权值共享、池化技术都是出于减少网络参数的目的。如下图所示: 假如我们的网络模型是: 输入层->一层隐含层->输出层 样图是100原创 2017-09-03 11:12:17 · 1261 阅读 · 0 评论 -
Tensorflow :Unsuccessful TensorSliceReader constructor: Failed to find any matching files
Tensorflow最新的版本,在使用Saver载入模型参数时会报错:Tensorflow :Unsuccessful TensorSliceReader constructor: Failed to find any matching files意思是说找不到模型保存的文件。 在Saver.save中我们传入sess,modelpath 例如: dir=”D:\data\Iris\” sa原创 2017-09-02 11:01:12 · 11358 阅读 · 7 评论 -
CNN学习(二)-LeNet网络结构的学习
LeNet简介LeNet神经网络由深度学习三巨头之一的Yan LeCun提出,他同时也是卷积神经网络 (CNN,Convolutional Neural Networks)之父。LeNet主要用来进行手写字符的识别与分类,并在美国的银行中投入了使用。LeNet的实现确立了CNN的结构,现在神经网络中的许多内容在LeNet的网络结构中都能看到,例如卷积层、池化层。虽然LeNet早在20世纪90年代就已原创 2017-09-03 13:45:02 · 1917 阅读 · 0 评论 -
Tensorflow C++ 学习(一) 搭建环境
前言Tensorflow 网上大部分是python的资料较多,而C++方面的极少,因此,接下来会有一系列的博客用于学习tensorflow,记录学习的过程。加油!搭建环境既然使用C++的API,那第一步就是搭建Tensorflow的工作环境 1. 准备一台64位的虚拟机 ,我安装的ubuntu 16.04 64位的. 用新的虚拟机主要是图个干净利落,同时修改好软件源,建议改成阿里云的,安装一些常用原创 2017-06-14 00:38:56 · 28078 阅读 · 19 评论