原题网址:https://leetcode.com/problems/find-median-from-data-stream/
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples: [2,3,4]
, the median is 3
[2,3]
, the median is (2 + 3) / 2 = 2.5
Design a data structure that supports the following two operations:
- void addNum(int num) - Add a integer number from the data stream to the data structure.
- double findMedian() - Return the median of all elements so far.
For example:
add(1) add(2) findMedian() -> 1.5 add(3) findMedian() -> 2
方法:使用一个最大堆和一个最小堆,中位数就在两个堆的顶部。
class MedianFinder {
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
// Adds a number into the data structure.
public void addNum(int num) {
if (minHeap.isEmpty() && maxHeap.isEmpty()) {
minHeap.add(num);
} else if (minHeap.isEmpty()) {
if (num >= maxHeap.peek()) {
minHeap.add(num);
} else {
maxHeap.add(num);
}
} else if (maxHeap.isEmpty()) {
if (num <= minHeap.peek()) {
maxHeap.add(num);
} else {
minHeap.add(num);
}
} else {
if (num <= minHeap.peek()) {
maxHeap.add(num);
} else {
minHeap.add(num);
}
}
if (minHeap.size()<maxHeap.size()-1) minHeap.add(maxHeap.poll());
else if (maxHeap.size()<minHeap.size()-1) maxHeap.add(minHeap.poll());
}
// Returns the median of current data stream
public double findMedian() {
if (minHeap.size() < maxHeap.size()) return maxHeap.peek();
else if (minHeap.size() > maxHeap.size()) return minHeap.peek();
else return (double)(minHeap.peek()+maxHeap.peek())/2;
}
};
// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();
简化:
class MedianFinder {
private PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
// Adds a number into the data structure.
public void addNum(int num) {
if (minHeap.isEmpty()) minHeap.add(num);
else if (num >= minHeap.peek()) minHeap.add(num);
else maxHeap.add(num);
if (minHeap.size() > maxHeap.size() + 1) maxHeap.add(minHeap.remove());
else if (maxHeap.size() > minHeap.size() + 1) minHeap.add(maxHeap.remove());
}
// Returns the median of current data stream
public double findMedian() {
if (minHeap.size() == maxHeap.size()) return (double)(minHeap.peek()+maxHeap.peek())/2;
else if (minHeap.size() > maxHeap.size()) return minHeap.peek();
else return maxHeap.peek();
}
};
// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();
简化:
public class MedianFinder {
private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
private PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
// Adds a number into the data structure.
public void addNum(int num) {
if (maxHeap.isEmpty() || num <= maxHeap.peek()) {
maxHeap.offer(num);
} else {
minHeap.offer(num);
}
if (maxHeap.size() > minHeap.size() + 1) {
minHeap.offer(maxHeap.poll());
} else if (minHeap.size() > maxHeap.size() + 1) {
maxHeap.offer(minHeap.poll());
}
}
// Returns the median of current data stream
public double findMedian() {
if (maxHeap.size() > minHeap.size()) return maxHeap.peek();
if (maxHeap.size() < minHeap.size()) return minHeap.peek();
return (double)(maxHeap.peek() + minHeap.peek()) / 2;
}
};
// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();