LeetCode 295. Find Median from Data Stream(数据流中位数)

12 篇文章 0 订阅
8 篇文章 0 订阅

原题网址:https://leetcode.com/problems/find-median-from-data-stream/

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples: 

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Design a data structure that supports the following two operations:

  • void addNum(int num) - Add a integer number from the data stream to the data structure.
  • double findMedian() - Return the median of all elements so far.

For example:

add(1)
add(2)
findMedian() -> 1.5
add(3) 
findMedian() -> 2

方法:使用一个最大堆和一个最小堆,中位数就在两个堆的顶部。

class MedianFinder {
    PriorityQueue<Integer> minHeap = new PriorityQueue<>();
    PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());

    // Adds a number into the data structure.
    public void addNum(int num) {
        if (minHeap.isEmpty() && maxHeap.isEmpty()) {
            minHeap.add(num);
        } else if (minHeap.isEmpty()) {
            if (num >= maxHeap.peek()) {
                minHeap.add(num);
            } else {
                maxHeap.add(num);
            }
        } else if (maxHeap.isEmpty()) {
            if (num <= minHeap.peek()) {
                maxHeap.add(num);
            } else {
                minHeap.add(num);
            }
        } else {
            if (num <= minHeap.peek()) {
                maxHeap.add(num);
            } else {
                minHeap.add(num);
            }
        }
        
        if (minHeap.size()<maxHeap.size()-1) minHeap.add(maxHeap.poll());
        else if (maxHeap.size()<minHeap.size()-1) maxHeap.add(minHeap.poll());
    }

    // Returns the median of current data stream
    public double findMedian() {
        if (minHeap.size() < maxHeap.size()) return maxHeap.peek();
        else if (minHeap.size() > maxHeap.size()) return minHeap.peek();
        else return (double)(minHeap.peek()+maxHeap.peek())/2;
    }
};

// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();

简化:

class MedianFinder {
    
    private PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
    private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
    
    // Adds a number into the data structure.
    public void addNum(int num) {
        if (minHeap.isEmpty()) minHeap.add(num);
        else if (num >= minHeap.peek()) minHeap.add(num);
        else maxHeap.add(num);
        if (minHeap.size() > maxHeap.size() + 1) maxHeap.add(minHeap.remove());
        else if (maxHeap.size() > minHeap.size() + 1) minHeap.add(maxHeap.remove());
    }

    // Returns the median of current data stream
    public double findMedian() {
        if (minHeap.size() == maxHeap.size()) return (double)(minHeap.peek()+maxHeap.peek())/2;
        else if (minHeap.size() > maxHeap.size()) return minHeap.peek();
        else return maxHeap.peek();
    }
};

// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();

简化:

public class MedianFinder {
    
    private PriorityQueue<Integer> minHeap = new PriorityQueue<>();
    private PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());

    // Adds a number into the data structure.
    public void addNum(int num) {
        if (maxHeap.isEmpty() || num <= maxHeap.peek()) {
            maxHeap.offer(num);
        } else {
            minHeap.offer(num);
        }
        if (maxHeap.size() > minHeap.size() + 1) {
            minHeap.offer(maxHeap.poll());
        } else if (minHeap.size() > maxHeap.size() + 1) {
            maxHeap.offer(minHeap.poll());
        }
    }

    // Returns the median of current data stream
    public double findMedian() {
        if (maxHeap.size() > minHeap.size()) return maxHeap.peek();
        if (maxHeap.size() < minHeap.size()) return minHeap.peek();
        return (double)(maxHeap.peek() + minHeap.peek()) / 2;
    }
};

// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值