原题网址:https://leetcode.com/problems/counting-bits/
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Hint:
- You should make use of what you have produced already.
- Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to generate new range from previous.
- Or does the odd/even status of the number help you in calculating the number of 1s?
方法一:直接统计比特数。
public class Solution {
public int[] countBits(int num) {
int[] bits = new int[num+1];
for(int i=1; i<=num; i++) {
int j=i;
while (j>0) {
if ((j&1)==1) bits[i] ++;
j >>= 1;
}
}
return bits;
}
}
方法二:利用已有信息,即你所求的问题能够帮你进一步回答更多问题!
public class Solution {
public int[] countBits(int num) {
int high = 1, next = high << 1;
int mask = 0;
int[] bits = new int[num+1];
for(int i=1; i<=num; i++) {
if (i == next) {
high = next;
mask <<= 1;
mask |= 1;
next = high << 1;
}
bits[i] = bits[i&mask];
if ((i & high) != 0) bits[i] ++;
}
return bits;
}
}
更简洁的版本:
public class Solution {
public int[] countBits(int num) {
int[] counts = new int[num+1];
for(int i=1; i<=num; i<<=1) {
for(int j=0; j<i && i+j<=num; j++) {
counts[i+j] = counts[j] + 1;
}
}
return counts;
}
}