【bzoj 1036】树的统计

7 篇文章 0 订阅

Description
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v: 询问从点u到点v的路径上的节点的权值和
注意:从点u到点v的路径上的节点包括u和v本身

Input
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

Sample Output
4
1
2
2
10
6
5
6
5
16

解题思路

树链剖分。
代码:

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<cstdlib>
using namespace std;
struct ldx
{
    int x,y;
    int mx,sum;
}f[300005];
char ch[10];
int hed[30005],nex[60005],to[60005];
int siz[30005],dep[30005];
int son[30005],fa[30005];
int top[30005],pos[30005];
int s[30005];
int lx,ly,n,q,tot=0,lo=0;
void add(int x,int y)
{
    lo++;
    nex[lo]=hed[x];
    hed[x]=lo;
    to[lo]=y;
}
void dfs1(int x,int fi)//dep,fa,son,siz
{
    fa[x]=fi;siz[x]=1;
    dep[x]=dep[fi]+1;
    for(int i=hed[x];i!=0;i=nex[i])
    if(to[i]!=fi)
    {
        dfs1(to[i],x);
        siz[x]+=siz[to[i]];
        if(siz[son[x]]<siz[to[i]]) son[x]=to[i];
    }
}
void dfs2(int x,int tp)//top pos
{
    top[x]=tp;pos[x]=++tot;
    if(son[x]==0) return ;
    dfs2(son[x],tp);
    for(int i=hed[x];i!=0;i=nex[i])
    if(to[i]!=fa[x] && to[i]!=son[x])
    dfs2(to[i],to[i]);
}
void build(int num,int a,int b)
{
    f[num].x=a;f[num].y=b;
    if(a==b) 
    {
        f[num].mx=f[num].sum=s[a];
        return ;
    }

    int mid=(a+b)>>1;
    build(num<<1,a,mid);
    build(num<<1|1,mid+1,b);

    f[num].mx=max(f[num<<1].mx,f[num<<1|1].mx);
    f[num].sum=f[num<<1].sum+f[num<<1|1].sum;
}

void res(int num)
{
    if(f[num].x==f[num].y && f[num].x==lx)
    {
        f[num].mx=f[num].sum=ly;
        return ;
    }

    int mid=(f[num].x+f[num].y)>>1;
    if(mid>=lx) res(num<<1);
    else res(num<<1|1);

    f[num].mx=max(f[num<<1].mx,f[num<<1|1].mx);
    f[num].sum=f[num<<1].sum+f[num<<1|1].sum;
}

int qsum(int num)
{
    if(f[num].x>=lx && f[num].y<=ly) return f[num].sum; 
    int mid=(f[num].x+f[num].y)>>1;
    if(ly<=mid) return qsum(num<<1);
    else if(lx>mid) return qsum(num<<1|1);
    else return qsum(num<<1)+qsum(num<<1|1);
}
int qmx(int num)
{
    if(f[num].x>=lx && f[num].y<=ly) return f[num].mx;  
    int mid=(f[num].x+f[num].y)>>1;
    if(ly<=mid) return qmx(num<<1);
    else if(lx>mid) return qmx(num<<1|1);
    else return max(qmx(num<<1),qmx(num<<1|1));
}

int solve_sum(int a,int b)
{
    int ans=0;
    while(top[a]!=top[b])
    {
        int f1=top[a],f2=top[b];
        if(dep[f1]<dep[f2]) {swap(f1,f2);swap(a,b);}
        lx=pos[f1];ly=pos[a];
        ans+=qsum(1);a=fa[f1];
    }

    lx=pos[a];ly=pos[b];
    if(lx>ly) swap(lx,ly);
    ans+=qsum(1);

    return ans;
}
int solve_mx(int a,int b)
{
    int ans=-30000;
    while(top[a]!=top[b])
    {
        int f1=top[a],f2=top[b];
        if(dep[f1]<dep[f2]) {swap(f1,f2);swap(a,b);}
        lx=pos[f1];ly=pos[a];
        ans=max(ans,qmx(1));a=fa[f1];
    }

    lx=pos[a];ly=pos[b];
    if(lx>ly) swap(lx,ly);
    ans=max(ans,qmx(1));

    return ans;
}

int main()
{
    int a,b,c;
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        scanf("%d%d",&a,&b);
        add(a,b);add(b,a);
    }   

    dfs1(1,1);dfs2(1,1);
    for(int i=1;i<=n;i++) 
    {
        scanf("%d",&c);
        s[pos[i]]=c;
    }
    build(1,1,n);

    scanf("%d",&q);
    for(int i=1;i<=q;i++)
    {
        scanf("%s%d%d",ch,&a,&b);
        if(ch[0]=='C')
        {
            lx=pos[a];ly=b;
            res(1);
        }
        else if(ch[1]=='M')
        {
            int r=solve_mx(a,b);
            printf("%d\n",r);
        }
        else 
        {
            int r=solve_sum(a,b);
            printf("%d\n",r);
        }
    }

    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值