目标检测 | Detectron2 中Boxes 详解

深度学习 同时被 3 个专栏收录
34 篇文章 0 订阅
7 篇文章 0 订阅
8 篇文章 0 订阅

简介

  • Boxes 是Detectron2 中用来处理检测框的基础类,功能强大,几乎包含boxe所有处理, 包括clip、scale、cat 、erea、nonempty等等操作。

代码解析

  • 初始化类,可以看出成员变量tensor是一个二维tensor,保存N个框(x0, y0, x1, y1), 第二维度为4, 可以存放anchor或groun truth.整个Boxes都是围绕这个tensor进行一系列操作
class Boxes:
    """
    This structure stores a list of boxes as a Nx4 torch.Tensor.
    It supports some common methods about boxes
    (`area`, `clip`, `nonempty`, etc),
    and also behaves like a Tensor
    (support indexing, `to(device)`, `.device`, and iteration over all boxes)

    Attributes:
        tensor (torch.Tensor): float matrix of Nx4.
    """

    BoxSizeType = Union[List[int], Tuple[int, int]]

    def __init__(self, tensor: torch.Tensor):
        """
        Args:
            tensor (Tensor[float]): a Nx4 matrix.  Each row is (x1, y1, x2, y2).
        """
        device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu")
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            tensor = torch.zeros(0, 4, dtype=torch.float32, device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size()

        self.tensor = tensor
  • clone , 复制Boxes(新的内存空间)
  def clone(self) -> "Boxes":
        """
        Clone the Boxes.

        Returns:
            Boxes
        """
        return Boxes(self.tensor.clone())
  • to,指定tensor的device(“cuda” or “cpu”)
 def to(self, device: str) -> "Boxes":
        return Boxes(self.tensor.to(device))
  • area, 计算框面积
    def area(self) -> torch.Tensor:
        """
        Computes the area of all the boxes.

        Returns:
            torch.Tensor: a vector with areas of each box.
        """
        box = self.tensor
        area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])
        return area
  • clip, 将框坐标clip到图片区域
 def clip(self, box_size: BoxSizeType) -> None:
        """
        Clip (in place) the boxes by limiting x coordinates to the range [0, width]
        and y coordinates to the range [0, height].

        Args:
            box_size (height, width): The clipping box's size.
        """
        assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!"
        h, w = box_size
        self.tensor[:, 0].clamp_(min=0, max=w)
        self.tensor[:, 1].clamp_(min=0, max=h)
        self.tensor[:, 2].clamp_(min=0, max=w)
        self.tensor[:, 3].clamp_(min=0, max=h)
  • nonempt, 清除小于指定大小的框
    def nonempty(self, threshold: int = 0) -> torch.Tensor:
        """
        Find boxes that are non-empty.
        A box is considered empty, if either of its side is no larger than threshold.

        Returns:
            Tensor:
                a binary vector which represents whether each box is empty
                (False) or non-empty (True).
        """
        box = self.tensor
        widths = box[:, 2] - box[:, 0]
        heights = box[:, 3] - box[:, 1]
        keep = (widths > threshold) & (heights > threshold)
        return keep
  • _ _ g e t _ i t e m _ _ \_\_get\_item\_\_ __get_item__,索引获取框。
  """
        Returns:
            Boxes: Create a new :class:`Boxes` by indexing.

        The following usage are allowed:

        1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box.
        2. `new_boxes = boxes[2:10]`: return a slice of boxes.
        3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor
           with `length = len(boxes)`. Nonzero elements in the vector will be selected.

        Note that the returned Boxes might share storage with this Boxes,
        subject to Pytorch's indexing semantics.
        """
        if isinstance(item, int):
            return Boxes(self.tensor[item].view(1, -1))
        b = self.tensor[item]
        assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item)
        return Boxes(b)
  • 框的个数
 def __len__(self) -> int:
        return self.tensor.shape[0]
  • inside_box,主要用于faster rcnn计算positive和negative时,删除一些越界的框。
  def inside_box(self, box_size: BoxSizeType, boundary_threshold: int = 0) -> torch.Tensor:
        """
        Args:
            box_size (height, width): Size of the reference box.
            boundary_threshold (int): Boxes that extend beyond the reference box
                boundary by more than boundary_threshold are considered "outside".

        Returns:
            a binary vector, indicating whether each box is inside the reference box.
        """
        height, width = box_size
        inds_inside = (
            (self.tensor[..., 0] >= -boundary_threshold)
            & (self.tensor[..., 1] >= -boundary_threshold)
            & (self.tensor[..., 2] < width + boundary_threshold)
            & (self.tensor[..., 3] < height + boundary_threshold)
        )
        return inds_inside
  • get_centers,计算框中心

    def get_centers(self) -> torch.Tensor:
        """
        Returns:
            The box centers in a Nx2 array of (x, y).
        """
        return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2
  • scale, 归一化坐标
    def scale(self, scale_x: float, scale_y: float) -> None:
        """
        Scale the box with horizontal and vertical scaling factors
        """
        self.tensor[:, 0::2] *= scale_x
        self.tensor[:, 1::2] *= scale_y
  • cat, 将多个Boxes 拼接成一个
@staticmethod
    def cat(boxes_list: List["Boxes"]) -> "Boxes":
        """
        Concatenates a list of Boxes into a single Boxes

        Arguments:
            boxes_list (list[Boxes])

        Returns:
            Boxes: the concatenated Boxes
        """
        assert isinstance(boxes_list, (list, tuple))
        assert len(boxes_list) > 0
        assert all(isinstance(box, Boxes) for box in boxes_list)

        cat_boxes = type(boxes_list[0])(cat([b.tensor for b in boxes_list], dim=0))
        return cat_boxes
  • device, tensor 对应device属性
    @property
    def device(self) -> torch.device:
        return self.tensor.device
  • _ _ i t e r _ _ \_\_iter\_\_ __iter__迭代器
    def __iter__(self) -> Iterator[torch.Tensor]:
        """
        Yield a box as a Tensor of shape (4,) at a time.
        """
        yield from self.tensor
  • 2
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值