计算机视觉
文章平均质量分 96
梅森姑娘
这个作者很懒,什么都没留下…
展开
-
Python 深度学习概述与计算机视觉挑战
Python 深度学习文章目录Python 深度学习挑战与常规套路图像分类:计算机视觉核心任务图像在计算机中长什么样?挑战:照射角度、光照强度、形状改变、部分遮蔽、背景混入常规套路:用 k - 近邻来进行分类k - 近邻算法:数据集样例:CIFAR - 10如何计算的呢:最近邻代码超参数与交叉验证:超参数:问题测试结果:背景主导:挑战与常规套路图像分类:计算机视觉核心任务图像在计算机中长什...原创 2019-04-08 18:21:23 · 843 阅读 · 0 评论 -
医学图像分割之 Dice Loss
文章目录医学图像分割之 Dice Loss1. Dice coefficient 定义1.1. Dice 系数计算示例1.2. Dice-coefficient loss function vs cross-entropy2. Dice 系数的 Pytorch 实现2.1. Dice 系数2.2. Dice Loss2.3. BCELoss2d3. Dice 系数的 Keras 实现4. Dice...原创 2019-07-27 17:41:35 · 37647 阅读 · 19 评论 -
VNet医学影像网络论文详解
文章目录为什么有了VNet?论文部分Introduction为什么这种网络在医学影像方面表现这样好?Method左侧卷积下采样右侧skip-connectionDice Loss Layer讲解PPT分享论文地址为什么有了VNet?之前很多的方法都是只能处理2D图像,而在临床的实践中很多都是包含3D体积。因此提出了一种基于体积、基于FCN的三维图像分割方法。在描述MRI体积上进行端到端的训练...原创 2019-07-31 17:24:16 · 14000 阅读 · 3 评论 -
Python多张单通道(少通道)图合成多通道图
文章目录Python多张单通道(少通道)图合成多通道图前言如何操作在操作中遇到的一些问题cv2库中的常用函数以及作用Python多张单通道(少通道)图合成多通道图前言在深度学习种我们常常需要对图片进行处理,可能会有亮度、对比度、剪切、图片大小、添加标注框等的处理,今天我们进行对图片的合成,以及我在通道合成中里遇到的一些问题。通过对图片的预处理我们可以得到更多版本的数据,便于我们对数据的训练。...原创 2019-07-25 09:46:41 · 11221 阅读 · 22 评论 -
深度学习如何制作数据和数据集
文章目录人工智能/深度学习如何制作自己的数据/数据集准备工作labelimg下载下载预编译二进制库Python 2 + Qt4的安装命令如下Python 3 + Qt5的安装命令如下macOS系统Python 2 + Qt4的安装命令如下Python 3 + Qt5 的安装命令(只适用于 macOS High Sierra)Windows系统Windows系统 + anaconda从 PyPI获取...原创 2019-07-16 13:26:16 · 9513 阅读 · 5 评论 -
U-Net网络理解与应用
U-Net网络理解与应用文章目录U-Net网络理解与应用前言What is U-Net简单介绍和基本特点U-Net网络的优点和不同点数据增强笔者当时的一些疑问为什么引入FCN,FCN和CNN的不同What is momentum????总结前言在图像分割任务特别是医学图像分割中,U-Net[1]无疑是最成功的方法之一,该方法在2015年MICCAI会议上提出,目前已达到四千多次引用。采用的编...原创 2019-05-09 14:40:05 · 31426 阅读 · 0 评论 -
TensorFlow图像数据处理之图像预处理,如何对图像进行预处理?
TensorFlow图像数据处理之图像预处理文章目录TensorFlow图像数据处理之图像预处理TFRecord输入数据格式为什么要把数据转化为TFRecord格式TFRecord样例程序图像数据处理TensorFlow图像处理函数输出原始矩阵和原始图像对图像进行大小调整对图像进行按百分比的剪裁对图片的亮度进行处理对图像添加标记框总结TFRecord输入数据格式为什么要把数据转化为TFRec...原创 2019-04-20 16:32:05 · 3976 阅读 · 0 评论 -
卷积神经网络之迁移学习——迁移学习是什么?如何实现?应用方面
卷积神经网络之迁移学习文章目录卷积神经网络之迁移学习什么是/为什么要迁移学习(Transfer Learning)迁移学习介绍TensoFlow实现迁移学习什么适合迁移总结什么是/为什么要迁移学习(Transfer Learning) 迁移学习(Transfer Learning):具体的讲就是,将一个问题上训练好的模型通过简单的调整使其适用于一个新的问题。一种学习对另一种学习的影响,或习...原创 2019-04-18 20:42:22 · 7533 阅读 · 0 评论