OpenCV机器学习(9)向量机(Support Vector Machine, SVM)cv::ml::SVM

  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::ml::SVM 是 OpenCV 机器学习模块中的一部分,用于实现支持向量机(Support Vector Machine, SVM)。SVM 是一种强大的监督学习算法,主要用于分类和回归分析。它通过找到一个最优的超平面来区分不同类别的数据点,或者在回归任务中预测连续值。

主要特点

  • 二分类与多分类:虽然SVM本质上是为二分类问题设计的,但OpenCV中的SVM可以通过一对多策略处理多分类问题。
  • 核函数支持:支持线性、多项式、RBF(径向基函数)、Sigmoid等多种核函数,允许非线性分类。
  • 参数调节:提供了多种参数调节选项,如惩罚因子C、核函数参数等,以优化模型性能。

常用成员函数

以下是一些常用的 cv::ml::SVM 类成员函数:

  • 创建模型实例
    • Ptr create():创建一个新的 SVM 模型实例。
  • 设置模型参数
    • void setType(int val):设置SVM类型(如 C_SVC, NU_SVC, ONE_CLASS, EPS_SVR, NU_SVR)。
    • void setKernel(int val):设置使用的核函数类型(如 LINEAR, POLY, RBF, SIGMOID)。
    • void setC(double val):设置SVM的惩罚参数C,默认值为1。
    • void setGamma(double val):设置核函数的gamma参数(对于RBF、POLY、SIGMOID核)。
    • void setDegree(double val):设置多项式核的度数。
    • void setCoef0(double val):设置核函数的系数0(对于POLY、SIGMOID核)。
    • void setNu(double val):设置ν-SVC、ν-SVR中的ν参数。
    • void setP(double val):设置ε-SVR中的ε值。

训练模型

  • bool train(const Ptr& trainData, int flags=0):使用提供的训练数据进行训练。
  • bool train(InputArray samples, int layout, InputArray responses):另一种形式的训练函数,直接接受样本和响应矩阵作为输入。

预测

  • float predict(InputArray samples, OutputArray results=noArray(), int flags=0) const:对新样本进行预测,并返回每个样本的类别标签或预测值(取决于标志)。

加载与保存模型

  • void save(const String& filename) const:将模型保存到文件。
  • static Ptr load(const String& filename):从文件加载模型。

代码示例

#include <iostream>
#include <opencv2/ml.hpp><
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值