- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
将图像从BGR色彩空间转换为I420色彩空间。
该函数将输入图像从BGR色彩空间转换为I420。R、G和B通道值的传统范围是0到255。
输出图像必须是8位无符号1通道图像。CV_8UC1。I420输出图像的宽度必须与输入图像的宽度相同。I420输出图像的高度必须等于输入图像高度的3/2。
cv::gapi::BGR2I420 是 OpenCV 的 G-API 模块中的一个函数,用于将 BGR(蓝绿红)颜色空间的图像转换为 I420(也称为 YUV 4:2:0)颜色格式。I420 格式是一种平面格式,其中亮度信息(Y)存储在一个平面上,而色度信息(U和V)分别以较低分辨率存储在另外两个平面上。
注意
函数的文字ID是 “org.opencv.imgproc.colorconvert.bgr2i420”
函数原型
GMat cv::gapi::BGR2I420
(
const GMat & src
)
参数
- 参数 src 输入图像:8位无符号3通道图像 CV_8UC3。
代码示例
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/opencv.hpp>
int main()
{
// 加载输入图像
cv::Mat bgr_img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png" );
if ( bgr_img.empty() )
{
std::cerr << "无法读取图像,请检查路径是否正确。\n";
return -1;
}
// 定义G-API网络
cv::GMat in;
cv::GMat yuv = cv::gapi::BGR2I420( in );
// 创建并运行G-API图
cv::GComputation comp( cv::GIn( in ), cv::GOut( yuv ) );
// 准备接收输出的变量
cv::Mat yuv_output;
// 应用计算图
comp.apply( bgr_img, yuv_output );
// 现在我们需要手动将YUV420平面分离
int height = bgr_img.rows;
int width = bgr_img.cols;
// Y平面是完整分辨率
cv::Mat y_plane( height, width, CV_8UC1, yuv_output.data );
// U和V平面是1/4分辨率
cv::Mat uv_plane( height / 2, width / 2, CV_8UC2, yuv_output.data + height * width );
// 分离UV平面
std::vector< cv::Mat > uv_channels;
cv::split( uv_plane, uv_channels );
cv::Mat u_plane = uv_channels[ 0 ];
cv::Mat v_plane = uv_channels[ 1 ];
// 显示或处理结果
cv::imwrite( "y_plane.png", y_plane );
cv::imwrite( "u_plane.png", u_plane );
cv::imwrite( "v_plane.png", v_plane );
return 0;
}