C Looooops

C Looooops
题目描述
对于C的for(i=A ; i!=B ;i +=C)循环语句,给出A,B,C和k(k表示变量是在k位操作系统下的无符号整数),判断循环次数,不能终止输出”FOREVER”.

输入
多组数据,每组一行,A,B,C,k
程序以0 0 0 0结束

输出
一行一个整数,表示循环次数,或者”FOREVER”
样例输入
3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

样例输出
0
2
32766
FOREVER

提示

对于100%的数据满足:0 <= A, B, C < 2k,1 <= k <= 32。

从题面可知
需要求解 (A+ x*C)%mod=B
C * x+mod * y=B-A=gcd(C,mod)*[(B-A)/gcd(C,mod)]
用扩展欧几里德定理 需要求C * x + mod * y = gcd(C , mod)
a = C, b = mod
即模线性方程

代码

不建议Ctrl C+Ctrl V ! ! !

#include<iostream>  
#include<cstdio>  
#include<cstring>  
#define ll long long  
using namespace std;  
ll exgcd(ll a,ll b,ll &x,ll &y){  
    if(b==0) {  
        x=1;  
        y=0;  
        return a;  
    }  
    ll ans=exgcd(b,a%b,x,y);  
    ll temp=x;  
    x=y;  
    y=temp-a/b*y;  
    return ans;  
}  
int main()  
{  
    ll a,b,c,d,k,A,B,C,X,Y;  
    while(1) { 
        cin>>a>>b>>c>>k;  
        if(a==0&&b==0&&c==0&&k==0)  
        break;  
        C=b-a;  
        A=c;  
        B=(ll)1<<k;  
        if(C<0) {  
            C+=B;  
        }  
        d=exgcd(A,B,X,Y);  
        if(C%d!=0) {  
            printf("FOREVER\n");  
        }  
        else{ 
            ll t=B/d;  
            ll ans=(X*C/d)%B;  
            ans=(ans%t+t)%t;  
            cout<<ans<<endl;  
        }  
    }  
} 

“`

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值