1907: k倍区间
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 8 Solved: 7
[ Submit][ Status][ Web Board]
Description
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
Input
每个数据包含多组输入数据
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
Output
输出一个整数,代表K倍区间的数目。
Sample Input
5 2
1
2
3
4
5
Sample Output
6
【分析】
很有意思的一道题....出自蓝桥杯...第一眼以为是线段树,后来发现就算写线段树也不会对时间复杂度进行优化,因为还是要求每个区间的和....
显然暴力n^3是不行的,那么在n^3的基础上,如过预处理一下前缀和sum[i]表示前i个数的和,那么就可以优化成n^2,但是这道题的数据范围显然n^2也还是会超时的,所以这里就出现了一点很关键的东西,在前缀和求区间和的时候,区间和=sum[i]-sum[j],那么如果预处理的时候已经对sum[i]%k,那么sum[i]∈[0,k),整个sum数组都小于k,那么能满足abs(sum[i]-sum[j])%k==0的情况,就只有sum[i]=sum[j]的情况了,所以对sum[i]只要判断0~i之间有多少个sum[j]==sum[i]就可以了,复杂度是O(n)
【代码】
#include <stdio.h>
#include <string.h>
int f[100100]={0};
int vis[100100]={0};
int a[100100]={0};
int main()
{
//FILE *p1,*p2;
//p1=fopen("2.in","r");
//p2=fopen("2.out","w");
int n,m;
while (~scanf("%d%d",&n,&m))
{
memset(vis,0,sizeof(vis));
memset(f,0,sizeof(f));
vis[0]=1;
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
f[i]=(f[i-1]+a[i])%m;
}
int ans=0;
for (int i=1;i<=n;i++)
{
ans+=vis[f[i]];
vis[f[i]]++;
}
printf("%d\n",ans);
}
//fclose(p1);
//fclose(p2);
return 0;
}