余弦计算相似度度量(优秀)

余弦计算相似度度量

相似度度量(Similarity),即计算个体间的相似程度,相似度度量的值越小,说明个体间相似度越小,相似度的值越大说明个体差异越大。

对于多个不同的文本或者短文本对话消息要来计算他们之间的相似度如何,一个好的做法就是将这些文本中词语,映射到向量空间,形成文本中文字和向量数据的映射关系,通过计算几个或者多个不同的向量的差异的大小,来计算文本的相似度。下面介绍一个详细成熟的向量空间余弦相似度方法计算相似度

向量空间余弦相似度(Cosine Similarity)

余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。

上图两个向量a,b的夹角很小可以说a向量和b向量有很高的的相似性,极端情况下,a和b向量完全重合。如下图:

如上图二:可以认为a和b向量是相等的,也即a,b向量代表的文本是完全相似的,或者说是相等的。如果a和b向量夹角较大,或者反方向。如下图

如上图三: 两个向量a,b的夹角很大可以说a向量和b向量有很底的的相似性,或者说a和b向量代表的文本基本不相似。那么是否可以用两个向量的夹角大小的函数值来计算个体的相似度呢?

向量空间余弦相似度理论就是基于上述来计算个体相似度的一种方法。下面做详细的推理过程分析。

想到余弦公式,最基本计算方法就是初中的最简单的计算公式,计算夹角

 

图(4)

的余弦定值公式为:

但是这个是只适用于直角三角形的,而在非直角三角形中,余弦定理的公式是

图(5)

三角形中边a和b的夹角 的余弦计算公式为:

公式(2)

在向量表示的三角形中,假设a向量是(x1, y1),b向量是(x2, y2),那么可以将余弦定理改写成下面的形式:

图(6)

向量a和向量b的夹角 的余弦计算如下

 

扩展,如果向量a和b不是二维而是n维,上述余弦的计算法仍然正确。假定a和b是两个n维向量,a是  ,b是  ,则a与b的夹角 的余弦等于:

余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,夹角等于0,即两个向量相等,这就叫"余弦相似性"。

【下面举一个例子,来说明余弦计算文本相似度】

    举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。

         句子A:这只皮靴号码大了。那只号码合适

句子B:这只皮靴号码不小,那只更合适

怎样计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词

句子A:这只/皮靴/号码/大了。那只/号码/合适。

句子B:这只/皮靴/号码/不/小,那只/更/合适。

第二步,列出所有的词。

这只,皮靴,号码,大了。那只,合适,不,小,很

第三步,计算词频。

句子A这只1,皮靴1,号码2,大了1。那只1,合适1,不0,小0,更0

句子B这只1,皮靴1,号码1,大了0。那只1,合适1,不1,小1,更1

第四步,写出词频向量。

  句子A:(1,1,2,1,1,1,0,0,0)

  句子B:(1,1,1,0,1,1,1,1,1)

到这里,问题就变成了如何计算这两个向量的相似程度。我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合,这是表示两个向量代表的文本完全相等;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

使用上面的公式(4)

 

计算两个句子向量

句子A:(1,1,2,1,1,1,0,0,0)

和句子B:(1,1,1,0,1,1,1,1,1)的向量余弦值来确定两个句子的相似度。

计算过程如下:

计算结果中夹角的余弦值为0.81非常接近于1,所以,上面的句子A和句子B是基本相似的

由此,我们就得到了文本相似度计算的处理流程是:

    (1)找出两篇文章的关键词;

 (2)每篇文章各取出若干个关键词,合并成一个集合,计算每篇文章对于这个集合中的词的词频

 (3)生成两篇文章各自的词频向量;

 (4)计算两个向量的余弦相似度,值越大就表示越相似。

余弦相似度作为相似度度量有以下优点和缺点: 优点: 1. 简单易懂:余弦相似度是一种直观易懂的相似度度量方法,不需要深入的数学理论知识。 2. 对文本长度不敏感:余弦相似度不受文本长度的影响,因此适用于任意长度的文本。 3. 不受文本方向的影响:余弦相似度不考虑文本的方向,因此在文本比较时是无方向的。 4. 可以处理稀疏向量:余弦相似度可以有效地处理稀疏向量,这在自然语言处理中非常有用。 5. 适用于高维数据:余弦相似度在高维数据中表现良好,因为在高维空间中,向量之间的距离很难计算。 6. 适用于文本分类:余弦相似度可以用来计算文本之间的相似度,因此可以用于文本分类。 7. 适用于推荐系统:余弦相似度可以用于计算用户之间的相似度,因此可以用于推荐系统。 8. 可以处理词袋模型:余弦相似度可以用于处理词袋模型,因为它可以将文本表示为向量形式。 9. 不受绝对值的影响:余弦相似度只受向量的方向影响,而不受向量的绝对值大小的影响。 10. 可以与其他相似度度量方法结合使用:余弦相似度可以与其他相似度度量方法结合使用,从而提高相似度度量的准确性。 缺点: 1. 不考虑向量的重要性:余弦相似度只考虑向量的方向,而不考虑向量的重要性,因此可能会忽略一些重要的特征。 2. 对重复出现的单词敏感:余弦相似度对重复出现的单词敏感,因为它只考虑单词在文本中出现的次数。 3. 对文本的语法和语义不敏感:余弦相似度只考虑单词在文本中出现的次数,而不考虑单词的语法和语义,因此可能会忽略一些重要的信息。 4. 受向量的长度影响:余弦相似度受向量的长度影响,因此在计算相似度时需要对向量进行归一化处理。 5. 对稀疏向量计算较慢:余弦相似度计算稀疏向量的相似度时比较慢,因为需要计算所有非零元素的乘积。 6. 对角度较大的向量计算不准确:余弦相似度对角度较大的向量计算不准确,因为角度较大的向量之间的差别很小。 7. 不适用于负数向量:余弦相似度不适用于负数向量,因为负数向量的方向很难确定。 8. 对相同向量计算相似度为1:余弦相似度对相同向量计算相似度为1,这可能会误导一些应用。 9. 不能解决语义相似度余弦相似度不能解决语义相似度的问题,因为它只考虑单词在文本中出现的次数。 10. 对数据集的大小敏感:余弦相似度对数据集的大小敏感,因此需要对数据集进行采样或者降维处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值