自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

虾米记的博客

骐骥一跃,不能十步;驽马十驾,功在不舍.

  • 博客(110)
  • 收藏
  • 关注

原创 【AI日记】24.11.03 熟悉Hugging Face和开源大模型选择

日记:熟悉Hugging Face和开源大模型选择,读书

2024-11-03 22:18:24 159

原创 【AI日记】24.11.02 LangChain Chat with Your Data

日记:主要学习了这门课 LangChain Chat with Your Data

2024-11-02 22:00:12 180

原创 【AI知识点】最大边际相关性搜索(Maximal Marginal Relevance Search,MMR)

最大边际相关性搜索(Maximal Marginal Relevance Search,MMR) 是一种在信息检索和文本摘要生成中常用的技术,旨在平衡搜索结果的相关性和多样性。该方法通过避免检索结果中的冗余信息,使得返回的结果既与查询高度相关,又在内容上相对多样化,从而提高信息的覆盖度。

2024-11-02 15:47:41 792

原创 【AI日记】24.11.01 LangChain、openai api和github copilot

【AI日记】24.11.01 LangChain、openai api和github copilot

2024-11-01 22:46:13 562

原创 【AI日记】24.10.31 学习LangChain和寻找AI研究报告(比如麦肯锡)

日记:学习LangChain和寻找AI研究报告(比如麦肯锡)

2024-10-31 22:20:38 761

原创 【AI日记】24.10.30 做项目的一些前期准备工作

AI日记:看访谈,搭积木做项目,为项目做准备,学习langchain,读书。

2024-10-30 22:01:25 431

原创 【AI日记】24.10.29 调整战略:做项目,先入行,循序渐进,顺势而为

调整战略:做项目,先入行,循序渐进,顺势而为

2024-10-29 22:16:44 399

原创 【AI日记】24.10.28 大模型推理能力初探

初步研究了大模型的推理能力,尤其是因果推理能力和数学推理能力

2024-10-28 21:47:32 325

原创 【AI日记】24.10.27 了解AI的未来

今日工作:看AI访谈和修改简历,明日计划:研究LLM推理能力

2024-10-27 21:30:34 214

原创 【AI日记】24.10.26 战略思考:找工作的准备方向调整

简单记录我每天的学习和工作的内容、收获和反思,也会有一些生活的内容和反思,不一定每天都写。

2024-10-27 09:56:20 185

原创 【AI战略思考11】判断天下大势,寻找织田信长

这是我未来对AI研究的一些战略目标的明确和战术上的一些调整,比如论文精读等的头脑风暴。

2024-10-26 22:49:53 1259

原创 【AI战略思考10】太阁立志传

我以前喜欢玩游戏,尤其是战略游戏。我现在觉得与其玩角色扮演的战略游戏,不如好好经营自己的人生,我的人生过去和未来就是一场几十年的战略游戏,而我的博客就是自己的“太阁立志传”,将记录和见证未来自己崎岖坎坷、历经万难又坚韧不屈的成功之路。

2024-10-25 15:08:31 1191

原创 【AI战略思考9】公司文化、价值观和竞争优势

这是我对公司文化、价值观和竞争优势的一些思考

2024-10-24 16:34:43 1058

原创 【AI战略思考8】我的朋友分类之深刻反思和诚恳道歉

这是我刚发在朋友圈的反思和道歉,之前的博客不打算删,现在看起来当时的自己真的很傻很幼稚很刻薄,不过既然是我当时的所想和所做,那就一直留着吧,当做一个警示和教训,犯错了就要承担责任,知错就改,而不是文过饰非。

2024-10-23 22:32:03 797

原创 【AI战略思考7】粮草筹集完毕和我的朋友分类

粮草筹集后续和我的朋友分类

2024-10-23 15:26:56 1184

原创 【AI知识点】多跳检索(Multi-hop Retrieval)

多跳检索(Multi-hop Retrieval) 是指通过多个中间步骤,从多个相关的信息片段中逐步检索,找到最终答案或信息的一种过程。与单跳检索不同,多跳检索需要模型或系统能够通过一系列连贯的检索步骤,结合多个不同来源或片段的信息来回答复杂的问题。它特别适合那些需要跨越多个文档或片段才能得到完整答案的场景。

2024-10-22 18:32:06 627

原创 【AI战略思考6】高筑墙,广积粮,静待周文王

这是我接下来几个月找工作的过程中保证自己的粮草供应的战略思考和解决方案。

2024-10-21 19:33:55 783

原创 【AI论文精读6】SELF-RAG(23.10)P3(完)

论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是我对第3部分的解读。

2024-10-21 15:43:34 1145

原创 【AI知识点】束搜索(Beam Search)

束搜索(Beam Search) 是一种常用于序列生成任务的启发式搜索算法,广泛应用于自然语言处理中的机器翻译、文本生成等任务。它是一种平衡了搜索效率和搜索质量的方法,相比于贪心搜索,它能找到更优的解,但计算复杂度比穷举搜索更低。

2024-10-20 19:03:51 1169

原创 【AI知识点】知识蒸馏(Knowledge Distillation)

知识蒸馏是一种有效的模型压缩方法,通过教师模型将知识传递给学生模型,使得在保持性能的同时降低模型复杂度和推理时间。它在移动设备、嵌入式系统和大规模深度学习模型压缩等场景中具有广泛的应用前景。

2024-10-20 18:29:21 775

原创 【AI论文精读6】SELF-RAG(23.10)P2

论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是我对第2部分的解读。

2024-10-19 20:49:13 929 1

原创 【AI论文精读6】SELF-RAG(23.10)附录

论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是论文的附录部分。

2024-10-19 20:45:55 1079

原创 【AI知识点】指令微调(Instruction Tuning)

指令微调(Instruction Tuning) 是通过自然语言指令指导预训练模型执行多种任务的技术。其目的是让模型理解不同的任务描述,并根据指令动态调整任务行为,从而增强模型的多任务能力和泛化能力。

2024-10-18 21:42:06 1198

原创 【AI论文精读6】SELF-RAG(23.10)P1

论文精读:该论文训练了一个单一的语言模型,该模型能够根据需要自适应地进行段落检索。在多项任务上显著超越了当时最新的大型语言模型和检索增强模型。我前面读的两篇RAG综述论文都提到了它。它是我后面要读的一篇RAG论文的重要基础。代码和模型开源,且附录部分有对实验部分的详细说明,方便学习和参考。这是第1部分。

2024-10-18 14:07:16 1117

原创 【AI论文精读5】知识图谱与LLM结合的路线图-P4(完)

该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第4部分(完)的解读。

2024-10-17 16:13:50 1271

原创 【AI知识点】对比学习(Contrastive Learning)

对比学习(Contrastive Learning) 是一种基于样本之间相似性和差异性的无监督或自监督学习方法,旨在通过构建正例和负例对来学习数据的有效表示。对比学习广泛应用于自然语言处理(NLP)、计算机视觉(CV)等领域,尤其在表征学习(Representation Learning) 中表现出色。通过对比正例和负例,模型能够学习到不同样本之间的相似性和差异性,从而生成更具区分性的特征表示。

2024-10-16 22:44:35 903

原创 【AI论文精读5】知识图谱与LLM结合的路线图-P3

该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第3部分的解读。

2024-10-16 21:15:42 852

原创 【AI知识点】知识图谱的组合爆炸问题(Combinatorial Explosion)

组合爆炸问题(Combinatorial Explosion) 是知识图谱中的一个重要挑战,特别是在大规模知识图谱中的推理、训练和查询任务中,随着实体和关系数量的增加,潜在的组合数量呈指数级增长。为了解决这一问题,研究者们提出了多种方法,包括知识图谱嵌入、负采样优化、基于图结构的搜索优化和分布式计算等。未来的解决方案将更加依赖于智能化的图推理和高效的知识表示方法,帮助我们在处理大规模知识图谱时应对组合爆炸的挑战。

2024-10-15 21:47:38 1010

原创 【AI知识点】知识图谱评分函数(Scoring Function for Knowledge Graphs)

知识图谱评分函数(Scoring Function for Knowledge Graphs) 是知识图谱嵌入技术中的核心部分。评分函数的作用是为每个三元组分配一个分数,该分数反映三元组中实体与关系是否符合逻辑。

2024-10-15 18:44:22 863

原创 【AI知识点】均值池化(Mean Pooling)

均值池化(Mean Pooling) 是一种非常简单而有效的聚合操作,它通过对一组向量取平均值,生成一个整体表示。这在需要对多重向量进行汇总的任务中非常有用,例如自然语言处理中的句子表示或知识图谱中的三元组表示。

2024-10-15 13:52:17 689

原创 【AI论文精读5】知识图谱与LLM结合的路线图-P2

该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第2部分的解读。

2024-10-14 21:40:53 1110

原创 【AI知识点】知识图谱(Knowledge Graph)

知识图谱(Knowledge Graph) 是一种用于组织、存储和表示知识的结构化数据模型,它通过实体(entities) 和实体之间的关系(relationships) 构建一个网络,展示现实世界中各种概念及其相互关系。知识图谱能够将不同领域的数据和信息整合到一起,形成知识网络,从而帮助机器进行更智能的决策、推理和查询。

2024-10-14 13:43:55 962

原创 【AI知识点】三种不同架构的大语言模型(LLMs)的区别

在自然语言处理(NLP)中,预训练语言模型(LLMs, Large Language Models)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能、任务适用性、训练数据和推理能力等多个角度详细分析。

2024-10-14 11:23:24 1011

原创 【AI论文精读5】知识图谱与LLM结合的路线图-P1

该论文提出了一个将大型语言模型(LLMs)与知识图谱(KGs)相结合的路线图。这是我对论文第1部分的解读。

2024-10-13 23:15:43 894

原创 【AI论文精读4】RAG论文综述2(微软亚研院 2409)P6(完)-隐含推理查询L4

这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第6部分(完)的解读。

2024-10-13 12:32:11 692

原创 【AI论文精读4】RAG论文综述2(微软亚研院 2409)P5-可解释推理查询L3

这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第5部分的解读。

2024-10-12 23:45:13 1074

原创 【AI论文精读4】RAG论文综述2(微软亚研院 2409)P4-隐性事实查询L2

这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第4部分的解读。

2024-10-12 17:53:58 1126

原创 【AI论文精读4】RAG论文综述2(微软亚研院 2409)P3-显性事实查询L1

这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第3部分的解读。

2024-10-12 12:35:25 1296

原创 【AI论文精读4】RAG论文综述2(微软亚研院 2409)P2-问题定义

这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第2部分的解读。

2024-10-11 18:16:19 1122

原创 【AI论文精读4】RAG论文综述2(微软亚研院,2409)-P1

这是RAG的最新综述(2024年9月23日),作者团队来自微软亚洲研究院,本综述旨在帮助读者构建数据增强LLM应用的全局视角(比RAG更广更高),并作为一本系统开发此类应用的指南。这是我对该论文第1部分的解读。

2024-10-11 15:25:38 1058

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除