1 篇文章 0 订阅
5 篇文章 0 订阅
2 篇文章 0 订阅

题目

E. DZY Loves Fibonacci Numbers

Background
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2).
DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: a1, a2, …, an. Moreover, there are m queries, each query has one of the two types:

Format of the query “1 l r”. In reply to the query, you need to add Fi - l + 1 to each element ai, where l ≤ i ≤ r.
Format of the query “2 l r”. In reply to the query you should output the value of modulo 1000000009 (109 + 9).
Help DZY reply to all the queries.

Input
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 300000). The second line contains n integers a1, a2, …, an (1 ≤ ai ≤ 109) — initial array a.

Then, m lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality 1 ≤ l ≤ r ≤ n holds.

Output
For each query of the second type, print the value of the sum on a single line.

Sample test(s) input
4 4
1 2 3 4
1 1 4
2 1 4
1 2 4
2 1 3
output
17
12
Note
After the first query, a = [2, 3, 5, 7].
For the second query, sum = 2 + 3 + 5 + 7 = 17.
After the third query, a = [2, 4, 6, 9].
For the fourth query, sum = 2 + 4 + 6 = 12.

思路

F1=F2=1的Fibonacci数列有以下性质

1. Fn=Fn2+Fn1 $F_n=F_{n-2}+F_{n-1}$
2. F1+F2++Fn=Fn+21 $F_1+F_2+…+F_n=F_{n+2}-1$

1. Hn=aFn2+bFn1 $H_n=a*F_{n-2}+b*F_{n-1}$
2. H1+H2++Hn=Hn+2b $H_1+H_2+…+H_n=H_{n+2}-b$

代码

#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
#define red(i, a, b) for(int i = (a); i >= (b); i--)
#define ll long long

const int N = 333333;
const ll mod = 1000000009ll;
int n, m;
struct node {
int l, r;
ll sum, f1, f2;
}t[N * 6];
ll a[N], F[N];

inline ll read() {
ll x = 0;
char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)) {
x = x * 10ll + c - '0';
c = getchar();
}
return x;
}

void calc_Fibonacci(int n) {
F[1] = 1; F[2] = 1;
rep(i, 3, N) F[i] = (F[i - 1] + F[i - 2]) % mod;
}

ll calc(ll a, ll b, ll n) {
if (n == 1) return a;
else if (n == 2) return b;
else return (a * F[n - 2] % mod + b * F[n - 1] % mod) % mod;
}

ll calc_range(ll a, ll b, ll n) {
if (n == 1) return a;
else if (n == 2) return (a + b) % mod;
else return (calc(a, b, n + 2) - b + mod) % mod;
}

void build(int x, int l, int r) {
int mid = (l + r) / 2, lc = x * 2, rc = x * 2 + 1;
t[x].l = l; t[x].r = r;
if (l == r) {
t[x].sum = a[l];
t[x].f1 = t[x].f2 = 0;
return;
}
build(lc, l, mid);
build(rc, mid + 1, r);
t[x].sum = (t[lc].sum + t[rc].sum) % mod;
t[x].f1 = t[x].f2 = 0;
}

void pushdown(int x) {
int l = t[x].l, r = t[x].r;
int mid = (l + r) / 2, lc = x * 2, rc = x * 2 + 1;
t[lc].f1 = (t[lc].f1 + t[x].f1) % mod;
t[lc].f2 = (t[lc].f2 + t[x].f2) % mod;
t[lc].sum += calc_range(t[x].f1, t[x].f2, mid - l + 1);
t[lc].sum %= mod;
t[rc].f1 = (t[rc].f1 + calc(t[x].f1, t[x].f2, mid - l + 2)) % mod;
t[rc].f2 = (t[rc].f2 + calc(t[x].f1, t[x].f2, mid - l + 3)) % mod;
t[rc].sum += calc_range(t[x].f1, t[x].f2, r - l + 1) - calc_range(t[x].f1, t[x].f2, mid - l + 1);
t[rc].sum = (t[rc].sum + mod) % mod;
t[x].f1 = t[x].f2 = 0;
}

void update(int x, int l, int r, int ql, int qr) {
int mid = (l + r) / 2, lc = x * 2, rc = x * 2 + 1;
if (l >= ql && r <= qr) {
t[x].f1 = (t[x].f1 + F[l - ql + 1]) % mod;
t[x].f2 = (t[x].f2 + F[l - ql + 2]) % mod;
t[x].sum += calc_range(F[l - ql + 1], F[l - ql + 2], r - l + 1);
t[x].sum %= mod;
return;
}
pushdown(x);
if (ql <= mid) update(lc, l, mid, ql, qr);
if (qr > mid) update(rc, mid + 1, r, ql, qr);
t[x].sum = (t[lc].sum + t[rc].sum) % mod;
return;
}

ll query(int x, int l, int r, int ql, int qr) {
int mid = (l + r) / 2, lc = x * 2, rc = x * 2 + 1;
if (l >= ql && r <= qr) return t[x].sum;
pushdown(x);
ll ans_left = 0, ans_right = 0;
if (ql <= mid) ans_left = query(lc, l, mid, ql, qr);
if (qr > mid) ans_right = query(rc, mid + 1, r, ql, qr);
return (ans_left + ans_right) % mod;
}

int main() {
n = read(); m = read();
calc_Fibonacci(n);
rep(i, 1, n) a[i] = read();
build(1, 1, n);
rep(i, 1, m) {
int tag, l, r;
tag = read();
l = read();
r = read();
if (tag == 1) update(1, 1, n, l, r);
else printf("%lld\n", query(1, 1, n, l, r));
}
return 0;
}

SR真是Hentai呢

End.

• 0
点赞
• 1
评论
• 0
收藏
• 一键三连
• 扫一扫，分享海报

09-01 703
07-14 998
07-15 805
07-14 51
08-10 662
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。