cf1101 D GCD Counting (树dp)

挺简单的树dp,两个点之间的公共素因子不会超过7个,枚举和子节点之间的公共素因子情况,有公共素因子就可以转移,长谷ide树dp去做就行了。

 

代码:

#include <bits/stdc++.h>
#define ps push_back
using namespace std;
const int maxn=2e5+5;
int a[maxn], ans;
int d[maxn][8];
int cnt[maxn];
int dp[3][8][maxn];
int s[30], mp[30];
vector<int> edg[maxn];
void dfs(int x, int fa)
{
    int ma[8][3];
    memset(ma, 0, sizeof(ma));
    for(int i=0; i<cnt[x]; i++)
    {
        dp[0][i][x]=dp[1][i][x]=1;
    }
    for(int i=0; i<edg[x].size(); i++)
    {
        int to=edg[x][i];
        if(to!=fa)
        {
            dfs(to, x);
            for(int j=0; j<cnt[x]; j++)
            {
                for(int k=0; k<cnt[to]; k++)
                {
                    if(d[x][j]==d[to][k])
                    {
                        dp[0][j][x]=max(dp[0][j][x], dp[0][k][to]+1);
                        ma[j][1]=max(ma[j][1], dp[0][k][to]+1);
                        if(ma[j][1]>ma[j][0])swap(ma[j][1],ma[j][0]);
                    }
                }
            }

        }
    }
    for(int i=0; i<cnt[x]; i++)
    {
        if(ma[i][1]>0)
        {
            dp[1][i][x]=max(dp[1][i][x], ma[i][1]+ma[i][0]-1);
            ans=max(ans, dp[1][i][x]);
        }
        ans=max(ans, dp[0][i][x]);
    }
    return;
}
int main()
{
    int i, j, num=1;

    int n;
    cin>>n;
    for(i=1; i<=n; i++)
    {
        scanf("%d", &a[i]);
        int x=a[i];
        for(int j=2; j<=sqrt(x); j++)
        {
            if(x%j==0)
            {
                d[i][cnt[i]++]=j;
                while(x%j==0)x/=j;
            }
        }
        if(x>1)d[i][cnt[i]++]=x;
    }

    for(int i=1; i<n; i++)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        edg[x].ps(y);
        edg[y].ps(x);
    }
    dfs(1,1);
//    if(ans==1)ans=0;
    cout<<ans<<endl;
    return 0;
}

 

<p> 限时福利限时福利,<span>15000+程序员的选择!</span> </p> <p> 购课后添加学习助手(微信号:csdn590),按提示消息领取编程大礼包!并获取讲师答疑服务! </p> <p> <br> </p> <p> 套餐中一共包含5门程序员必学的数学课程(共47讲) </p> <p> 课程1:《零基础入门微积分》 </p> <p> 课程2:《数理统计与概率论》 </p> <p> 课程3:《代码学习线性代数》 </p> <p> 课程4:《数据处理的最优化》 </p> <p> 课程5:《马尔可夫随机过程》 </p> <p> <br> </p> <p> 哪些人适合学习这门课程? </p> <p> 1)大学生,平时只学习了数学理论,并未接触如何应用数学解决编程问题; </p> <p> 2)对算法、数据结构掌握程度薄弱的人,数学可以让你更好的理解算法、数据结构原理及应用; </p> <p> 3)看不懂大牛代码设计思想的人,因为所有的程序设计底层逻辑都是数学; </p> <p> 4)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; </p> <p> 5)想修炼更好的编程内功,在遇到问题时可以灵活的应用数学思维解决问题。 </p> <p> <br> </p> <p> 在这门「专为程序员设计的数学课」系列课中,我们保证你能收获到这些:<br> <br> <span> </span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">①价值300元编程课程大礼包</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">②应用数学优化代码的实操方法</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">③数学理论在编程实战中的应用</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">④程序员必学的5大数学知识</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">⑤人工智能领域必修数学课</span> </p> <p> <br> 备注:此课程只讲程序员所需要的数学,即使你数学基础薄弱,也能听懂,只需要初中的数学知识就足矣。<br> <br> 如何听课? </p> <p> 1、登录CSDN学院 APP 在我的课程中进行学习; </p> <p> 2、登录CSDN学院官网。 </p> <p> <br> </p> <p> 购课后如何领取免费赠送的编程大礼包和加入答疑群? </p> <p> 购课后,添加助教微信:<span> csdn590</span>,按提示领取编程大礼包,或观看付费视频的第一节内容扫码进群答疑交流! </p> <p> <img src="https://img-bss.csdn.net/201912251155398753.jpg" alt=""> </p>
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页