codeforces 794 D Labelling Cities(脑洞)

题意:

一个图有n个点,m条边,保证整个图连通,问能否构造出一种权值,使得两个点之间权值差小于等于1当且仅当两个点有边相连。


解题思路:

其实感觉想法应该都是有的,但是很难整合出来,在几个点之间不互相连接的前提下,一个点如果连接其中超过2个点,肯定就不能构造出这样的权值。然后比较难想的就是可以把相邻的点集合(包括自己)相同的点的权值都赋值为相同,但是知道了这个后是很容易想通的,因为他们相邻的情况都相同,所以相邻的点跟自己的差值都相同, 所以可以当成一个点。这样完成缩点后,重新连接边,就可以用到之前的结论了。为什么缩点后就能满足满足前提呢?一个点连接三个互相独立的点,假如这三个点当中有两个点有边相连,那么说明这两个点的相邻的点的集合相同可以缩点,所以缩点完成后肯定满足了前提,具体过程自己想想就可以了。

另外最后成环的肯定也是不可以的。

然后具体做法就是排序或者哈希出有相同集合的点,进行缩点,重新建图,然后判断每个点度是否小于2,用 并查集判断是否成环,都满足后dfs跑一下这条链(最后就肯定是链啦),从链顶开始赋值就好了。


代码(哈希):

#include <bits/stdc++.h>
#define mk make_pair
#define ps push_back
#define LL long long 
using namespace std;
const int maxn=3e5+5;
LL bt[maxn];
LL d[maxn];
map<LL, int>has;
pair<int, int>edg[maxn];
int f[maxn];
int id[maxn];
int lab[maxn];
vector<int>e[maxn];
int getf(int x)
{
    if(x==f[x])return x;
    else return f[x]=getf(f[x]);
}
void dfs(int x, int y, int de)
{
    int i;
    lab[x]=de;
    for(i=0; i<(int)e[x].size(); i++)
    {
        if(e[x][i]==y)continue;
        dfs(e[x][i], x, de+1);
    }
}
int main()
{
    int i, j, n, m;
    cin>>n>>m;
    int x, y;
    bt[0]=1;
    for(int i=1; i<=n; i++)
    {
        bt[i]=3*bt[i-1];
        d[i]=bt[i];
    }
    for(i=0; i<m; i++)
    {
        scanf("%d%d", &x, &y);
        edg[i]=mk(x,y);
        d[x]+=bt[y], d[y]+=bt[x]; 
    }
    j=1;
    for(i=1; i<=n; i++)
    {
        if(!has[d[i]])has[d[i]]=j++;
        id[i]=has[d[i]];
        f[i]=i;
    }

    for(i=0; i<m; i++)
    {
        x=id[edg[i].first], y=id[edg[i].second];
        if(x==y)continue;
        for(j=0; j<(int)e[x].size(); j++)
        {
            if(e[x][j]==y)break;
        }
        if(j>=2){return 0*printf("NO\n");}
        if(j==(int)e[x].size())
        e[x].ps(y);               
        else continue;
        
        for(j=0; j<(int)e[y].size(); j++)
        {
            if(e[y][j]==x)break;
        }
        if(j>=2){return 0*printf("NO\n");}
        if(j==(int)e[y].size())
        e[y].ps(x);                
        else continue;
        if(getf(x)==getf(y))
        {
            return 0*printf("NO\n");
        }
        else f[getf(y)]=f[getf(x)];
    }
    for(i=1; i<=n; i++)
    {
        if((int)e[id[i]].size()<2)
        {
            dfs(id[i], -1, 1);
        }
    }
    printf("YES\n");
    for(i=1; i<=n; i++)printf(i==n?"%d\n":"%d ", lab[id[i]]);
}



### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值