题意:
一个图有n个点,m条边,保证整个图连通,问能否构造出一种权值,使得两个点之间权值差小于等于1当且仅当两个点有边相连。
解题思路:
其实感觉想法应该都是有的,但是很难整合出来,在几个点之间不互相连接的前提下,一个点如果连接其中超过2个点,肯定就不能构造出这样的权值。然后比较难想的就是可以把相邻的点集合(包括自己)相同的点的权值都赋值为相同,但是知道了这个后是很容易想通的,因为他们相邻的情况都相同,所以相邻的点跟自己的差值都相同, 所以可以当成一个点。这样完成缩点后,重新连接边,就可以用到之前的结论了。为什么缩点后就能满足满足前提呢?一个点连接三个互相独立的点,假如这三个点当中有两个点有边相连,那么说明这两个点的相邻的点的集合相同可以缩点,所以缩点完成后肯定满足了前提,具体过程自己想想就可以了。
另外最后成环的肯定也是不可以的。
然后具体做法就是排序或者哈希出有相同集合的点,进行缩点,重新建图,然后判断每个点度是否小于2,用 并查集判断是否成环,都满足后dfs跑一下这条链(最后就肯定是链啦),从链顶开始赋值就好了。
代码(哈希):
#include <bits/stdc++.h>
#define mk make_pair
#define ps push_back
#define LL long long
using namespace std;
const int maxn=3e5+5;
LL bt[maxn];
LL d[maxn];
map<LL, int>has;
pair<int, int>edg[maxn];
int f[maxn];
int id[maxn];
int lab[maxn];
vector<int>e[maxn];
int getf(int x)
{
if(x==f[x])return x;
else return f[x]=getf(f[x]);
}
void dfs(int x, int y, int de)
{
int i;
lab[x]=de;
for(i=0; i<(int)e[x].size(); i++)
{
if(e[x][i]==y)continue;
dfs(e[x][i], x, de+1);
}
}
int main()
{
int i, j, n, m;
cin>>n>>m;
int x, y;
bt[0]=1;
for(int i=1; i<=n; i++)
{
bt[i]=3*bt[i-1];
d[i]=bt[i];
}
for(i=0; i<m; i++)
{
scanf("%d%d", &x, &y);
edg[i]=mk(x,y);
d[x]+=bt[y], d[y]+=bt[x];
}
j=1;
for(i=1; i<=n; i++)
{
if(!has[d[i]])has[d[i]]=j++;
id[i]=has[d[i]];
f[i]=i;
}
for(i=0; i<m; i++)
{
x=id[edg[i].first], y=id[edg[i].second];
if(x==y)continue;
for(j=0; j<(int)e[x].size(); j++)
{
if(e[x][j]==y)break;
}
if(j>=2){return 0*printf("NO\n");}
if(j==(int)e[x].size())
e[x].ps(y);
else continue;
for(j=0; j<(int)e[y].size(); j++)
{
if(e[y][j]==x)break;
}
if(j>=2){return 0*printf("NO\n");}
if(j==(int)e[y].size())
e[y].ps(x);
else continue;
if(getf(x)==getf(y))
{
return 0*printf("NO\n");
}
else f[getf(y)]=f[getf(x)];
}
for(i=1; i<=n; i++)
{
if((int)e[id[i]].size()<2)
{
dfs(id[i], -1, 1);
}
}
printf("YES\n");
for(i=1; i<=n; i++)printf(i==n?"%d\n":"%d ", lab[id[i]]);
}