codeforces 794 D Labelling Cities(脑洞)

96 篇文章 0 订阅
51 篇文章 0 订阅

题意:

一个图有n个点,m条边,保证整个图连通,问能否构造出一种权值,使得两个点之间权值差小于等于1当且仅当两个点有边相连。


解题思路:

其实感觉想法应该都是有的,但是很难整合出来,在几个点之间不互相连接的前提下,一个点如果连接其中超过2个点,肯定就不能构造出这样的权值。然后比较难想的就是可以把相邻的点集合(包括自己)相同的点的权值都赋值为相同,但是知道了这个后是很容易想通的,因为他们相邻的情况都相同,所以相邻的点跟自己的差值都相同, 所以可以当成一个点。这样完成缩点后,重新连接边,就可以用到之前的结论了。为什么缩点后就能满足满足前提呢?一个点连接三个互相独立的点,假如这三个点当中有两个点有边相连,那么说明这两个点的相邻的点的集合相同可以缩点,所以缩点完成后肯定满足了前提,具体过程自己想想就可以了。

另外最后成环的肯定也是不可以的。

然后具体做法就是排序或者哈希出有相同集合的点,进行缩点,重新建图,然后判断每个点度是否小于2,用 并查集判断是否成环,都满足后dfs跑一下这条链(最后就肯定是链啦),从链顶开始赋值就好了。


代码(哈希):

#include <bits/stdc++.h>
#define mk make_pair
#define ps push_back
#define LL long long 
using namespace std;
const int maxn=3e5+5;
LL bt[maxn];
LL d[maxn];
map<LL, int>has;
pair<int, int>edg[maxn];
int f[maxn];
int id[maxn];
int lab[maxn];
vector<int>e[maxn];
int getf(int x)
{
    if(x==f[x])return x;
    else return f[x]=getf(f[x]);
}
void dfs(int x, int y, int de)
{
    int i;
    lab[x]=de;
    for(i=0; i<(int)e[x].size(); i++)
    {
        if(e[x][i]==y)continue;
        dfs(e[x][i], x, de+1);
    }
}
int main()
{
    int i, j, n, m;
    cin>>n>>m;
    int x, y;
    bt[0]=1;
    for(int i=1; i<=n; i++)
    {
        bt[i]=3*bt[i-1];
        d[i]=bt[i];
    }
    for(i=0; i<m; i++)
    {
        scanf("%d%d", &x, &y);
        edg[i]=mk(x,y);
        d[x]+=bt[y], d[y]+=bt[x]; 
    }
    j=1;
    for(i=1; i<=n; i++)
    {
        if(!has[d[i]])has[d[i]]=j++;
        id[i]=has[d[i]];
        f[i]=i;
    }

    for(i=0; i<m; i++)
    {
        x=id[edg[i].first], y=id[edg[i].second];
        if(x==y)continue;
        for(j=0; j<(int)e[x].size(); j++)
        {
            if(e[x][j]==y)break;
        }
        if(j>=2){return 0*printf("NO\n");}
        if(j==(int)e[x].size())
        e[x].ps(y);               
        else continue;
        
        for(j=0; j<(int)e[y].size(); j++)
        {
            if(e[y][j]==x)break;
        }
        if(j>=2){return 0*printf("NO\n");}
        if(j==(int)e[y].size())
        e[y].ps(x);                
        else continue;
        if(getf(x)==getf(y))
        {
            return 0*printf("NO\n");
        }
        else f[getf(y)]=f[getf(x)];
    }
    for(i=1; i<=n; i++)
    {
        if((int)e[id[i]].size()<2)
        {
            dfs(id[i], -1, 1);
        }
    }
    printf("YES\n");
    for(i=1; i<=n; i++)printf(i==n?"%d\n":"%d ", lab[id[i]]);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值