uoj 34 多项式乘法(fft入门)

96 篇文章 0 订阅
1 篇文章 0 订阅

模板题。

大概理解了fft的过程,但是代码还不是很熟练,只能理解比较简单的模板,大佬们的代码都看不懂qaq。


具体过程这篇博客讲的还是挺好的。

http://blog.csdn.net/under_sky_dxj/article/details/52778350


学FFT之前首先得学会DFT,DFT的作用是将时域转换到频域,其实就是将数组x[m]转换到数组X[m]的一个公式。而IDFT可以将X[m]转换回x[m]。对于数组a,b,求出其对应的A,B数组后,将其对应项相乘就对应A和B的卷积,但是这时候还需要IDFT将卷积转换回来,就得到a*b的卷积了。但是这个过程是O(n^2)的,因为DFT的时候x[i]的转换需要n次的计算。

FFT就是在这基础加速求卷积的一个算法。由某些(并不知道)性质得

A[m]=A1[m]+W[m]*A2[m],(W[m]是螺旋因子)

A[m+N/2]=A1[m]-W[m]*A2[m].

A1,A2是将a按下标奇偶分组后DFT求出的,A1对应奇数。

于是我们只要求出A1,A2就可以在线性时间内求出A。

设给长度为n的序列左DFT的复杂度为T(n),则有:

T(n)=2T(n/2)+O(n);

根据主定理T(n)=O(nlogn)。

(这个过程貌似叫蝶形运算)

这样就做DFT的复杂度就从O(n^2)降到O(nlogn)了。

接下来只要相乘然后再做一次IDFT就可以求出卷积。


相乘的过程貌似有精度优化,不是很懂原理,所以目前看不懂,以后再补。


写出来就是给自己看看,大佬要是万一看见了欢迎吐槽。


代码:


#include <cstdio>  
#include <cstring>  
#include <cmath>  
#include <algorithm>  
#define N 1000005  
#define pi acos(-1.0) // PI值  
using namespace std;  
struct complex  
{  
    double r,i;  
    complex(double real=0.0,double image=0.0){  
        r=real; i=image;  
    }  
    // 以下为三种虚数运算的定义  
    complex operator + (const complex o){  
        return complex(r+o.r,i+o.i);  
    }  
    complex operator - (const complex o){  
        return complex(r-o.r,i-o.i);  
    }  
    complex operator * (const complex o){  
        return complex(r*o.r-i*o.i,r*o.i+i*o.r);  
    }  
}x1[N],x2[N];  
double z[N];
char a[N/2],b[N/2];  
int sum[N]; // 结果存在sum里  
void brc(complex *y,int l) // 二进制平摊反转置换 O(logn)  
{  
    register int i,j,k;  
    for(i=1,j=l/2;i<l-1;i++)  
    {  
        if(i<j)  swap(y[i],y[j]); // 交换互为下标反转的元素  
                                // i<j保证只交换一次  
        k=l/2;  
        while(j>=k) // 由最高位检索,遇1变0,遇0变1,跳出  
        {  
            j-=k;  
            k/=2;  
        }  
        if(j<k)  j+=k;  
    }  
}  
void fft(complex *y,int l,double on) // FFT O(nlogn)  
                            // 其中on==1时为DFT,on==-1为IDFT  
{  
    register int h,i,j,k;  
    complex u,t;   
    brc(y,l); // 调用反转置换  
    for(h=2;h<=l;h<<=1) // 控制层数  
    {  
        // 初始化单位复根  
        complex wn(cos(on*2*pi/h),sin(on*2*pi/h));  
        for(j=0;j<l;j+=h) // 控制起始下标  
        {  
            complex w(1,0); // 初始化螺旋因子  
            for(k=j;k<j+h/2;k++) // 配对  
            {  
                u=y[k];  
                t=w*y[k+h/2];  
                y[k]=u+t;  
                y[k+h/2]=u-t;  
                w=w*wn; // 更新螺旋因子  
            } // 据说上面的操作叫蝴蝶操作…  
        }  
    }  
    if(on==-1)  for(i=0;i<l;i++) y[i].r/=l; // IDFT  
}  
int main(void)  
{  
    int l1,l2,l;  
    register int i;  
    int n, m;
    while(scanf("%d%d",&n,&m)!=EOF)  
    {  
        
        l1=n+1;  
        l2=m+1;  
        l=1;  
        while(l<l1*2 || l<l2*2)   l<<=1; // 将次数界变成2^n  
                                        // 配合二分与反转置换  
        for(i=0;i<=n;i++) // 倒置存入  
        {  
            scanf("%lf", &x1[i].r);
            x1[i].i=0.0;  
        }  
        for(;i<l;i++)    x1[i].r=x1[i].i=0.0;  
        // 将多余次数界初始化为0  
        for(i=0;i<=m;i++)  
        {  
            scanf("%lf", &x2[i].r);
            x2[i].i=0.0;  
        }  
        for(;i<l;i++)    x2[i].r=x2[i].i=0.0;  
        fft(x1,l,1); // DFT(a)  
        fft(x2,l,1); // DFT(b)  
        for(i=0;i<l;i++) x1[i]=x1[i]*x2[i]; // 点乘结果存入a  
        fft(x1,l,-1); // IDFT(a*b)  
        printf("%.0f", x1[0].r+0.1);
        for(i=1; i<l1+l2-1; i++)
        {


            printf(" %.0f", x1[i].r+0.1);
        }
        printf("\n");
        /*
        for(i=0;i<l;i++) sum[i]=x1[i].r+0.5; // 四舍五入  
        for(i=0;i<l;i++) // 进位  
        {  
            sum[i+1]+=sum[i]/10;  
            sum[i]%=10;  
        }  
        l=l1+l2-1;  
        while(sum[l]<=0 && l>0)   l--; // 检索最高位  
        for(i=l;i>=0;i--)    putchar(sum[i]+'0'); // 倒序输出  
        putchar('\n');  
        */
    }  
    return 0;  
}  






  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值