codeforces 449 D Jzzhu and Numbers(容斥+dp)

96 篇文章 0 订阅
64 篇文章 0 订阅

这题真的爆炸难懂...待补。


代码:

#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
const int maxn=1e6+5;
int dp[maxn];
long long p[maxn];
int main()
{
    int n, i, j, x;
    cin>>n;
    for(i=1, p[0]=1; i<=1000000; i++)p[i]=(p[i-1]*2LL)%mod;
    for(i=1; i<=n; i++)
    {
        scanf("%d", &x);
        dp[x]++;
    }
    for(i=0; i<=20; i++)
    {
        for(j=0; j<=1000000; j++)
        {
            if((1<<i)&j)dp[j^(1<<i)]=(dp[j^(1<<i)]+dp[j])%mod;
        }
    }
    
    long long ans=0;
    for(j=0; j<=1000000; j++)
    {
        if(dp[j]==0)continue;
        long long sign=1;
        for(i=0; i<=20; i++)if(j&(1<<i))sign=-sign;
        ans=((ans+sign*(p[dp[j]]-1LL))%mod+mod)%mod;
        
    }
    cout<<ans<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值