题意:
给出一个多叉树先序遍历序列,问有多少种不同的树的结构能跑出这样的序列,答案对1e9取模。
解题思路:
可以考虑一颗树在什么位置进行了怎样的分叉决定了它的形状,所以我们在不同的位置枚举不同的分叉, 统计情况就可以了。
对于一个没有分叉的一条到叶子节点的链,它的先序遍历一定是一个回文串。所以一条链能产生一个分叉关键条件是否由两个及以上不重叠回文子串组成。这个过程可以递归分治得到。
只能讲到这个程度,如果有表述不明可以留言,我更新一下。
代码:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int mod=1e9;
LL dp[305][305];
char a[305];
LL dfs(int l, int r)
{
if(dp[l][r]!=-1)return dp[l][r];
if(l==r)return 1;
if(a[l]!=a[r])return 0;
dp[l][r]=0;
int i, j;
for(i=l+2; i<=r; i++)
{
if(a[i]==a[l])
{
dp[l][r]=(dp[l][r]+dfs(l+1, i-1)*dfs(i, r))%mod;
}
}
return dp[l][r];
}
int main()
{
freopen("exploring.in", "r", stdin);
freopen("exploring.out", "w", stdout);
int i, j;
while(~scanf("%s", a+1))
{
int len=strlen(a+1);
for(i=0; i<=len; i++)
{
for(j=0; j<=len; j++)dp[i][j]=-1;
}
printf("%lld\n", dfs(1, len)%mod);
}
}