- 博客(17)
- 收藏
- 关注
原创 EOL while scanning string literal错误处理
错误 "EOL while scanning string literal" 通常出现在 Python 或其他需要明确字符串边界的编程语言中。这个错误表明 Python 解释器在扫描一个字符串字面量时遇到了意外的行尾(End Of Line, EOL),这通常是因为字符串的引号没有正确闭合。'''"""
2024-07-31 21:13:27 963
原创 鸢尾花逻辑回归分类项目实施
本项目最后一步需要用图形表示模型的分类效果,而数据集中有四个特征,维度较高,难以直接用图形表示。因此在特征提取中提取花瓣长度和花瓣宽度这两个特征作为训练模型的特征属性。
2024-07-25 21:48:40 544
原创 Call ‘fit‘ with appropriate arguments before using this estimator.
应该返回一个包含四个元素的元组,分别是训练数据、训练标签、测试数据和测试标签。你需要正确地解包这个元组。时没有正确分割数据,导致。
2024-07-25 21:32:05 1223
原创 使用逻辑回归进行分类
线性回归的直线是尽可能的你拟合自变量的分布,使得训练集中的所有样本点到直线的距离尽可能短。由于阶跃函数呈现为不连续的函数,无法对其进行求导,在求线性回归参数的时候,经常需要通过。把线性回归模型输出的连续值进行离散化,即将线性回归模型改造成相应的线性分类模型。设置若干阈值,将回归模型输出的连续值分割为不同的分区,每个区间表示一个类别。激活函数就是对连续值的离散化的一种函数。分类问题:相反地,模型的预测值是不连续的离散值,就是分类问题。回归问题:如果模型的预测值是连续的数值,就是回归问题。
2024-07-24 09:10:23 318
原创 训练线性回归模型及预测——学习存档
In[4]:# In[5]:# In[7]:# In[8]:# In[10]:# In[11]:# In[12]:# In[13]:# In[14]:# In[15]:# In[16]:# In[19]:# In[20]:
2024-07-23 15:23:35 343
原创 关于数据清洗的缺失值处理
'成绩':[90.0,80.0,80.0,np.nan,60.0]})print(df['成绩'].fillna(df['成绩'].mean(),inplace=True))'姓名':['小明','小华','小红','小红','小李'],df = pd.DataFrame({'学号':[1,2,3,4,5],但由于笔者时间限制,至于第三个为何没显示,还需要研究,下次补充!
2024-07-23 09:58:57 347
原创 E:\>python test1.pyTraceback (most recent call last): File “E:\test1.py“, line 33, in <module>
如果你的图像是经过一系列处理步骤得到的(如裁剪、旋转、缩放等),请确保这些步骤没有导致图像数据为空。在每个处理步骤后,打印图像的形状和类型,以确认数据是否仍然有效。print(f"Error: 图像文件 {filename} 无法加载,请检查文件路径和文件名是否正确。filename = 'E:/path/to/your/image.jpg' # 确保这是正确的文件路径。在你的代码中添加异常处理逻辑,以便在发生错误时能够捕获并处理它们。等)或空格,请确保它们被正确处理(例如,使用双反斜杠。
2024-07-12 17:59:42 836
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人