联邦学习
文章平均质量分 79
陈大笨
这个作者很懒,什么都没留下…
展开
-
联邦学习算法FedAvg实现(PyTorch)
联邦学习方法FedAvg实现(PyTorch)通俗来讲,**联邦学习(Federated Learning)**结构由Server和若干Client组成,在联邦学习方法过程中,没有任何用户数据被发送到Server端,通过这种方式保护了用户的数据隐私。另外,通信中传输的参数是特定于改进当前模型的,因此一旦应用了他们,Server就没有理由存储它们,这进一步提高了安全性。联邦学习的整体思路是**”数据不动 模型动“**。Server提供全局共享的模型,Client下载模型并训练自己的数据集,同时更新模型参数原创 2021-05-03 15:11:44 · 12975 阅读 · 8 评论 -
Federated Learning for Vision-and-Language Grounding Problems阅读笔记
Federated Learning for Vision-and-Language Grounding Problems阅读笔记论文主要工作提出一种联邦学习框架,通过生成细粒度的图像表示,框架提高了在不需要共享下游任务数据的情况下vision-and-language grounding问题的性能设计对齐、集成和映射网络【Aligning, Integrating and Mapping Net work (aimNet)】,在框架中实现了分布式模型,有效 自动地并将从图像提取出的视觉和文本特征转原创 2020-10-26 20:36:56 · 1336 阅读 · 0 评论