1:
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
输入: [2,2,1] 输出: 1
牛人解题:
int ans = nums[0];
if (nums.length > 1) {
for (int i = 1; i < nums.length; i++) {
ans = ans ^ nums[i];
}
}
return ans;
解析:
异或是机器码运算,相同为0不同为1,不管数字先后,只要两个数字相同对应的二进制都会被异或为00000000,最后剩下的就是所要找的值
本题只考虑,唯一出现一次的元素。
2:
. 给你一个长度为 n 的数组,其中只有一个数字出现了大于等于 n/2 次,问如何使用优秀的时空复杂度快速找到这个数字。
输入: [2,2,1,1,1,2,2] 输出: 2
候选人(cand_num)初始化为nums[0],票数count初始化为1。
当遇到与cand_num相同的数,则票数count = count + 1,否则票数count = count - 1。
当票数count为0时,更换候选人,并将票数count重置为1。
遍历完数组后,cand_num即为最终答案。
为何这行得通呢?
投票法是遇到相同的则票数 + 1,遇到不同的则票数 - 1。
且“多数元素”的个数> ⌊ n/2 ⌋,其余元素的个数总和<= ⌊ n/2 ⌋。
因此“多数元素”的个数 - 其余元素的个数总和 的结果 肯定 >= 1。
这就相当于每个“多数元素”和其他元素 两两相互抵消,抵消到最后肯定还剩余至少1个“多数元素”。
无论数组是1 2 1 2 1,亦或是1 2 2 1 1,总能得到正确的候选人。
class Solution {
public int majorityElement(int[] nums) {
int cand_num = nums[0], count = 1;
for (int i = 1; i < nums.length; ++i) {
if (cand_num == nums[i])
++count;
else if (--count == 0) {
cand_num = nums[i];
count = 1;
}
}
return cand_num;
}
}
3:给你一个长度为 n 的数组,其中只有一个数字出现了大于等于 n/2 次,问如何使用优秀的时空复杂度快速找到这个数字。
简单实现:二分查找
复杂实现:首先,我们初始化一个指向矩阵左下角的 (row,col)(row,col) 指针。然后,直到找到目标并返回 true(或者指针指向矩阵维度之外的 (row,col)(row,col) 为止,我们执行以下操作:如果当前指向的值大于目标值,则可以 “向上” 移动一行。 否则,如果当前指向的值小于目标值,则可以移动一列。不难理解为什么这样做永远不会删减正确的答案;因为行是从左到右排序的,所以我们知道当前值右侧的每个值都较大。 因此,如果当前值已经大于目标值,我们知道它右边的每个值会比较大。也可以对列进行非常类似的论证,因此这种搜索方式将始终在矩阵中找到目标(如果存在)。
4. 给你两颗二叉搜索树,如何使用线性的时间复杂度,将它们合并成一颗二叉搜索树。、
简单实现:使用Java API可以很好的实现改功能
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
System.arraycopy(nums2, 0, nums1, m, n);
Arrays.sort(nums1);
}
}
链接:https://leetcode-cn.com/problems/majority-element/solution/3chong-fang-fa-by-gfu-2/
来源:力扣(LeetCode)