spoj GSS1.区间最大子段和(线段树)

区间最大子段和

You are given a sequence A [ 1 ] , A [ 2 ] , . . . , A [ N ] . ( ∣ A [ i ] ∣ ≤ 15007 , 1 ≤ N ≤ 50000 ) A[1], A[2], ..., A[N]. ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000) A[1],A[2],...,A[N].(A[i]15007,1N50000). A query is defined as follows:
Q u e r y ( x , y ) = M a x ( a [ i ] + a [ i + 1 ] + . . . + a [ j ] ; x ≤ i ≤ j ≤ y ) Query(x,y) = Max (a[i]+a[i+1]+...+a[j] ; x ≤ i ≤ j ≤ y) Query(x,y)=Max(a[i]+a[i+1]+...+a[j];xijy).
Given M queries, your program must output the results of these queries.

Input
The first line of the input file contains the integer N N N.
In the second line, N N N numbers follow.
The third line contains the integer M M M.
M lines follow, where line i i i contains 2 2 2 numbers x i x_i xi and y i y_i yi.

Output
Your program should output the results of the M queries, one query per line.

Example
Input:

3
-1 2 3
1
1 2

Output:

2

Solution

对于每一个每个区间,保存一个Node,记录这个区间的sum(总和),maxsum(最大子段和),lmax(最大前缀和),rmax(最大后缀和),有了这四个标记,就可以随意转移,为所欲为了。。。
这里我们把核心代码拉出来讲一讲

ans.sum = lo.sum + ro.sum;//sum直接相加
ans.maxsum = max(max(lo.maxsum, ro.maxsum), lo.rmax + ro.lmax);//左右两半的最大子段和,合并起来的最大子段和
ans.lmax = max(lo.lmax, lo.sum + ro.lmax);//左边的最大前缀和,左边整段+右边最大前缀
ans.rmax = max(ro.rmax, ro.sum + lo.rmax);//右边的最大后缀和,右边整段+左边最大后缀

Code

#include <cstdio>
#include <algorithm>
#define N 50010

using namespace std;

struct Node{
    int sum, maxsum, lmax, rmax;
}tr[N << 2];
int a[N];

void build(int l, int r, int id) {
    if (l == r) {
        tr[id].sum = tr[id].maxsum = tr[id].lmax = tr[id].rmax = a[l];
        return;
    }
    int mid = (l + r) >> 1, ls = id << 1, rs = id << 1 | 1;
    build(l, mid, ls);
    build(mid + 1, r, rs);
    tr[id].sum = tr[ls].sum + tr[rs].sum;
    tr[id].maxsum = max(max(tr[ls].maxsum, tr[rs].maxsum), tr[ls].rmax + tr[rs].lmax);
    tr[id].lmax = max(tr[ls].lmax, tr[ls].sum + tr[rs].lmax);
    tr[id].rmax = max(tr[rs].rmax, tr[rs].sum + tr[ls].rmax);
}

Node query(int l, int r, int ll, int rr, int id) {
    if (ll <= l && r <= rr) {
        return tr[id];
    }
    int mid = (l + r) >> 1, ls = id << 1, rs = id << 1 | 1;
    if (rr <= mid) return query(l, mid, ll, rr, ls);
    if (mid < ll) return query(mid + 1, r, ll, rr, rs);
    Node lo = query(l, mid, ll, rr, ls), ro = query(mid + 1, r, ll, rr, rs), ans;
    ans.sum = lo.sum + ro.sum;
    ans.maxsum = max(max(lo.maxsum, ro.maxsum), lo.rmax + ro.lmax);
    ans.lmax = max(lo.lmax, lo.sum + ro.lmax);
    ans.rmax = max(ro.rmax, ro.sum + lo.rmax);
    return ans;
}

int main() {
    int n, m;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        scanf("%d", &a[i]);
    }
    build(1, n, 1);
    scanf("%d", &m);
    for (int i = 1; i <= m; ++i) {
        int x, y;
        scanf("%d%d", &x, &y);
        printf("%d\n", query(1, n, x, y, 1).maxsum);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值