memset详解 设置无穷大INF

27 篇文章 1 订阅
24 篇文章 0 订阅


http://www.xuebuyuan.com/1442940.html

memest原型 (please type "man memset" in your shell) 

 void *memset(void *s,  int c, size_t n); 

memset:作用是在一段内存块中填充某个给定的值,它对较大的结构体或数组进行清零操作的一种最快方法。

常见的三种错误


第一搞反了和 n的位置. 

一定要记住 如果要把一个char a[20]清零一定是 memset(a, 0, 20) 
而不是 memset(a, 20,  0) 


第二过度使用memset, 我想这些程序员可能有某种心理阴影他们惧怕未经初始化的内存所以他们会写出这样的代码: 

char buffer[20]; 

memset(buffer, 0, sizeof((char)*20)); 
strcpy(buffer, "123"); 

这里的memset是多余的因为这块内存马上就被覆盖了清零没有意义

第三其实这个错误严格来讲不能算用错memset, 但是它经常在使用memset的场合出现 

int some_func(struct something *a){ 
 … 
 … 
 memset(a, 0, sizeof(a)); 
 … 

问:为何要用memset置零?memset( &Address, 0, sizeof(Address));经常看到这样的用法,其实不用的话,分配数据的时候,剩余的空间也会置零的。

:1.如果不清空,可能会在测试当中出现野值。 你做下面的试验看看结果() 

char buf[5]; 

CString str,str1; //memset(buf,0,sizeof(buf)); for(int i = 0i<5i++) { str.Format(“%d “,buf[i]); str1 +=str ; } TRACE(“%s\r\n“,str1)

2.其实不然!特别是对于字符指针类型的,剩余的部分通常是不会为0,不妨作一个试验,定义一个字符数组,并输入一串字符,如果不用memset实现清零,使用MessageBox显示出来就会有乱码(0表示NULL,如果有,就默认字符结束,不会输出后面的乱码)

:

如下demo是可以的,能把数组中的元素值都设置成字符1
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
    char a[5];
    memset(a,'1',5);
    for(int i = 0;i < 5;i++)
      cout<<a[i]<<"  ";
    system("pause");
    return 0;
}
而,如下程序想吧数组中的元素值设置成1,却是不可行的
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
    int a[5];
    memset(a,1,5);//这里改成memset(a,1,5 *sizeof(int))也是不可以的
    for(int i = 0;i < 5;i++)
      cout<<a[i]<<"  ";
    system("pause");
    return 0;
}
问题是:

1,第一个程序为什么可以,而第二个不行,
2,不想要用for,或是while循环来初始化int a[5];能做到吗?(有没有一个像memset()这样的函数初始化)

:

1.因为第一个程序的数组a是字符型的,字符型占据内存大小是1Byte,而memset函数也是以字节为单位进行赋值的,所以你输出没有问题。而第二个程序a是整型的,使用memset还是按字节赋值,这样赋值完以后,每个数组元素的值实际上是0x01010101即十进制的16843009。你看看你输出结果是否这样? 

2.如果用memset(a,1,20);
就是对a指向的内存的20个字节进行赋值,每个都用ASCII1的字符去填充,转为二进制后,1就是00000001,占一个字节。一个INT元素是4字节,合一起就是1000000010000000100000001,就等于16843009,就完成了对一个INT元素的赋值了。

总结:

因为char1字节,memset是按照字节赋值的,相当于把每个字节都设为那个数,所以char型的数组可赋任意值,int4个字节,当memset(,1,sizeof()); 1相当于ASSCII码的11转为二进制00000001,当做一字节,一字节8位,int4字节,所以初始化完每个数为00000001000000010000000100000001 = 16843009 ,memset(,0xff,sizeof()),0xff转为二进制11111111int4字节所以最后为11111111111111111111111111111111-1(化为二进制补位,然后再赋值)。可以全赋值为0,0的二进制位000000000000000000000000000000000,还可以是-1-1的二进制就是11111111111111111111111111111111,所以memset可以直接初始化(0,-1);

例如:0xff转为二进制位11111111,正好是一位,0x1f小于0xff,而0x59也小于0xff,所以这些都可以用来初始化,只要能填满8位的二进制,就可以了。

如果你想初始最大化,第一位为符号位,不能为1,剩下全是1,也就是71,1111111化为

十六进制正好为0x7f,所以memset(,0x7f,sizeof());就可以了

Memset无穷大常量的设定技巧

如果问题中各数据的范围明确,那么无穷大的设定不是问题,在不明确的情况下,很多程序员都取0x7fffffff作为无穷大,因为这是32-bit int的最大值。如果这个无穷大只用于一般的比较(比如求最小值时min变量的初值),那么0x7fffffff确实是一个完美的选择,但是在更多的情况下,0x7fffffff并不是一个好的选择。

很多时候我们并不只是单纯拿无穷大来作比较,而是会运算后再做比较,例如在大部分最短路径算法中都会使用的松弛操作:
if (d[u]+w[u][v]<d[v]) d[v]=d[u]+w[u][v];
我们知道如果u,v之间没有边,那么w[u][v]=INF,如果我们的INF0x7fffffff,那么d[u]+w[u][v]会溢出而变成负数,我们的松弛操作便出错了,更一般的说,0x7fffffff不能满足无穷大加一个有穷的数依然是无穷大,它变成了一个很小的负数。

除了要满足加上一个常数依然是无穷大之外,我们的常量还应该满足无穷大加无穷大依然是无穷大至少两个无穷大相加不应该出现灾难性的错误,这一点上0x7fffffff依然不能满足我们。

所以我们需要一个更好的家伙来顶替0x7fffffff,最严谨的办法当然是对无穷大进行特别处理而不是找一个很大很大的常量来代替它(或者说模拟它),但是这样会让我们的编程过程变得很麻烦。在我读过的代码中,最精巧的无穷大常量取值是0x3f3f3f3f,我不知道是谁最先开始使用这个精妙的常量来做无穷大,不过我的确是从一位不认识的ACMer(ID:Staginner)的博客上学到的,他/她的很多代码中都使用了这个常量,于是我自己也尝试了一下,发现非常好用,而当我对这个常量做更深入的分析时,就发现它真的是非常精巧了。

0x3f3f3f3f的十进制是1061109567,也就是10^9级别的(和0x7fffffff一个数量级),而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。

另一方面,由于一般的数据都不会大于10^9,所以当我们把无穷大加上一个数据时,它并不会溢出(这就满足了无穷大加一个有穷的数依然是无穷大),事实上0x3f3f3f3f+0x3f3f3f3f=2122219134,这非常大但却没有超过32-bit int的表示范围,所以0x3f3f3f3f还满足了我们无穷大加无穷大还是无穷大的需求。

最后,0x3f3f3f3f还能给我们带来一个意想不到的额外好处:如果我们想要将某个数组清零,我们通常会使用memset(a,0,sizeof(a))这样的代码来实现(方便而高效),但是当我们想将某个数组全部赋值为无穷大时(例如解决图论问题时邻接矩阵的初始化),就不能使用memset函数而得自己写循环了(写这些不重要的代码真的很痛苦),我们知道这是因为memset是按字节操作的,它能够对数组清零是因为0的每个字节都是0,现在好了,如果我们将无穷大设为0x3f3f3f3f,那么奇迹就发生了,0x3f3f3f3f的每个字节都是0x3f!所以要把一段内存全部置为无穷大,我们只需要memset(a,0x3f,sizeof(a))

所以在通常的场合下,0x3f3f3f3f真的是一个非常棒的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值