Dijkstra在算法题中的应用

Dijkstra算法主要是解决单源最短路径

题干中会给我们描述一个图,基本上每一个端点都会和某一个端点相连,但并不是所有的任意两点都会相连。Dijkstra解决的是给定一个点,这个点到其他点的最短距离,在初始时,我们设立一个一维数组,让他的每一个值都趋向于无穷,代表断路,然后我们不断地从中介点来寻找彼此之间的最大值,同样还可以解决权值等,我们甚至可以加一个pre数组,来记录中间点。具体算法如下(我们假设求最短路径和最小权值,这样就假设输入两组数据,一个是路径R,一个是路长W):

int R[Max][Max];
int W[Max][Max];
int r[Max],w[Max];
int n,k,m;
bool Visit[Max];
void Dijkstra(int v)
{
	fill(r[0],r[0]+Max,INF);
	fill(w[0],w[0]+Max,INF);
	for(int i=0;i<=n;i++)
	{
		int u = -1,MIN=INF;
		for(int j=1;j<=n;j++)
		{
			if(Visit[j]==false&&r[j]<MIN)
			{
				u=j;
				MIN=r[j];
			}
		}
		if(u==-1) return ;
		Visit[u]==false;
		for(int j=1;j<=n;j++)
		{
			if(Visit[i]==false&&r[i]>R[u][j]+r[u])
			{
				r[j]=r[u]+R[u][j];
			}
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值