tensorflow
jomozz
这个作者很懒,什么都没留下…
展开
-
【Tensorflow】tf.placeholder函数
tf.placeholder(dtype, shape=None, name=None)此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值 1、参数: dtype:数据类型。常用的是tf.float32, tf.float64等数值类型 shape:数据形状。默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定 name:名称。x =转载 2017-11-20 17:18:35 · 2405 阅读 · 0 评论 -
在 Mac OS X 上安装 TensorFlow
建议使用 virtualenv 安装。virtualenv 是一个和其它 Python 项目开发隔离的虚拟 Python 环境,在同一台机器上不会干扰也不会被其它程序影响。virtualenv 安装过程中,你不仅仅安装了 TensorFlow 还有它的所有依赖包。(事实上这很简单)要开始使用 TensorFlow,你需要“启动” virtualenv 环境。总而言之,virtualenv 提供了一个原创 2017-11-17 12:18:59 · 517 阅读 · 0 评论 -
tensorflow中的矩阵生成与变换函数
一、矩阵生成1、tf.ones | tf.zeros用法tf.ones(shape,type=tf.float32,name=None) tf.zeros(shape,type=tf.int32,name=None) 说明:生成全0/全1矩阵,返回一个tensorinput = tf.zeros([2,2])[[ 0. 0.] [ 0. 0.]]input = tf.ones([3,3])转载 2017-11-21 12:09:39 · 1977 阅读 · 0 评论 -
Tensor(tf.Tensor)
Tensor类应该是最基本最核心的数据结构了,他表示的是一个操作的输出,但是他并不接收操作输出的值,而是提供了在TensorFlow的Session中计算这些值的方法。 Tensor类主要有两个目的: 1.一个Tensor能够作为一个输入来传递给其他的操作(Operation),由此构造了一个连接不同操作的数据流,使得TensorFLow能够执行一个表示很大,多步骤计算的图。 2.在转载 2017-11-21 17:53:41 · 5033 阅读 · 1 评论 -
TensorFlow--tf.Variable
通过构造一个Variable类的实例在图中添加一个变量(variable), Variable()这个构造函数需要初始值,这个初始值可以是一个任何类型任何形状的Tensor,初始值的形状和类型决定了这个变量的形状和类型。构造之后,这个变量的形状和类型就固定了,他的值可以通过assign()函数(或者assign类似的函数)来改变。如果你想要在之后改变变量的形状,你就需要assign()函数同时设转载 2017-11-21 18:23:58 · 225 阅读 · 0 评论 -
tensorflow入门-mnist手写数字识别(一)
转载来源:http://imtuzi.com/post/tensorflow-mnist-simplest.htmlmnist数据集简介MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片。在机器学习中的地位相当于Python入门的打印Hello World。该数据集包含以下四个部分train-images-idx3-ubyte.gz: 训练集-图片,6w train-labels-转载 2017-12-19 18:04:07 · 513 阅读 · 0 评论 -
交叉熵(Cross-Entropy)
文章转自:http://blog.csdn.net/rtygbwwwerr/article/details/50778098交叉熵(Cross-Entropy)交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。1.什么是信息量?假设X是一个离散型随机变量,其取值集合为XX,概率分布函数为p(x)=Pr(X=x),x∈Xp(x)=Pr(X=x),x∈X,我们定义事件X=转载 2017-12-01 17:54:17 · 1379 阅读 · 0 评论