若R1和R2是传递的,则R1°R2没有传递性,如何证明?

若R1和R2是传递的,则R1°R2没有传递性,如何证明?
反例, R1={<2,1>,<1,3>,<2,3>},R2={<1,3>,< 3.2>,<1,2>}, R1οR2 ={<2,3>,<1,2>,<2,2>} ,有<1,2> <2,3>但是没有<1,3> 所以无传递性

在这里插入图片描述
我在书上看到空关系是反自反的 大概是 比如A={1,2,3},这个R如果是空集的话,对于∀x∈A, 也就是x=1,2,3时,<1,1>,<2,2>,< 3,3>并不属于R,那么他就不是自反的。而且因为对于∀x∈A,<x,x>都不属于R,所以他是反自反的
但是如果这个A集合本身就是空集的话,我要从A里任意取得一个x这个前提都不成立,前件为0,所以可以推出自反成立,同理还可以推出空集合上的空关系是:自反的,反自反的,对称的,反对称的,传递的。但是十分重要的一点就是,A得是空集。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,求出 $R1 \circ R2$: $R1 \circ R2 = \{<x,z> \mid \exists y ((x,y) \in R2 \wedge (y,z) \in R1)\}$ 代入 $R1$ 和 $R2$ 的定义,展开得到: $R1 \circ R2 = \{<x,z> \mid \exists y ((x,y+2) \in R2 \wedge ((y+2)=z+1 \vee (y+2)=z/2))\}$ 再代入 $R2$ 的定义,得到: $R1 \circ R2 = \{<x,z> \mid \exists y (x=y+2 \wedge ((y+2)=z+1 \vee (y+2)=z/2))\}$ 所以 $R1 \circ R2$ 中的元素为 $\{<2,1>,<3,2>,<4,3>,<4,2>,<5,4>,<6,3>,<6,1>,<7,5>\}$。 接下来,求 $R1$ 的反,对称和传递闭包: - $r(R1) = \{x \mid \exists y <x,y> \in R1\} = A = \{0,1,2,3\}$ - $s(R1) = \{<x,y> \mid <y,x> \in R1\} \cup R1$ 对于 $s(R1)$,首先可以看到 $R1$ 中已经包含了一些对称的元素,如 $<1,2>$ 和 $<2,1>$,所以 $s(R1)$ 中应该也包含这些元素。此外,还需要找到 $R1$ 中不对称的元素,如 $<2,0>$ 和 $<3,1>$,将其反转并加入 $s(R1)$。最终得到 $s(R1) = \{<0,1>,<1,0>,<1,2>,<2,1>,<2,3>,<3,1>\}$。 - $t(R2)$ 即为 $R2$ 的转置,即交换所有元素的位置得到 $t(R2) = \{<y,x> \mid <x,y> \in R2\} = \{<y,x> \mid x=y+2\}$。 接下来,求 $R2$ 的关系矩阵 $M[R2]$: $$ M[R2] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} $$ 最后,求 $R2$ 的自反闭包 $R20$。由于 $R2$ 不具有自反性,所以 $R20 = R2 \cup \{(x,x) \mid x \in A\}$,即将 $R2$ 中所有元素 $<x,y>$ 替换为 $<(x,x),(y,y)>$ 即可得到 $R20$: $R20 = \{<(2,2),(0,0)>, <(3,3),(1,1)>, <(4,4),(2,2)>, <(4,4),(0,0)>, \\ <(5,5),(3,3)>, <(6,6),(2,2)>, <(6,6),(0,0)>, <(7,7),(5,5)>, \\ <(0,0),(0,0)>, <(1,1),(1,1)>, <(2,2),(2,2)>, <(3,3),(3,3)> \}$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值