大数据
1 概念
1.1 在时间复杂度和能量复杂度有限的前提下,输入:大数据D,输出:问题的解f(D)
2 技术点
2.1 大数据获取
互联网
物理世界信息
2.2 大数据的传输
安全可靠传输的理论和算法
大数据传输的调度和控制
在传输的过程中继续进行计算
2.3 大数据可用性
量质融合管理
劣质容忍原理
深度演化机制
2.4 共性问题
结构化算法
非结构化算法
2.5 安全与隐私
3 可能的改革
3.1 大数据硬件适配
通讯瓶颈
能量消耗
3.2 软件平台
程序设备模型
4 难点
4.1 计算
算法设计
线性和亚线性算法
数据压缩算法
无解压计算
基于抽样方法的计算
增量式的方法
基于主数据计算
云计算下的并行计算
4.2 数据可用性
量质融合管理
劣质容忍原理
深度演化机制
4.3 学科交叉