使用numpy生成随机数的方法与区别

本文主要介绍使用numpy产生随机数的一些方法

import numpy as np
# 产生维度为(d0, d1, ..., dn)的矩阵,数据范围为[0, 1),均匀分布
np.random.rand(d0, d1, ..., dn)
# 产生一个[0, 1)的数,不是ndarray,例如:0.161983476352082
np.random.rand()
import numpy as np
# 产生维度为(d0, d1, ..., dn)的矩阵,每一个数据是从标准正态分布中采样得到
np.random.randn(d0, d1, ..., dn)
# 从标准正态分布中采样得到一个数,不是ndarray,例如:-0.7718524487451033
np.random.randn()
import numpy as np
# 从[0, a)中有放回的等概率的取b个数(是否放回以及采样的概率可以设置)
# 注意返回值为ndarray,即使只采一个数的时候也是ndarray
np.random.choice(a, b)
import numpy as np
# 从[low, high)的区间内,等概率的返回size大小的ndarray
# 注意返回值为ndarray,即使只采一个数的时候也是ndarray
np.random.randint(low, high, size)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值