READING NOTE: A New Convolutional Network-in-Network Structure

本文提出了一种新的卷积网络-in-网络结构,该结构仅包含卷积层和ReLU层,去除了池化层和子采样层以保持特征图分辨率不变。这种结构能进行像素级匹配,并应用于皮肤检测、语义分割等问题中,实验结果表明其性能可与现有最佳方法媲美。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TITLE: A New Convolutional Network-in-Network Structure and Its Applications in Skin Detection, Semantic Segmentation, and Artifact Reduction

AUTHOR: Yoonsik Kim, Insung Hwang, Nam Ik Cho

ASSOCIATION: Seoul National University

FROM: arXiv:1701.06190

CONTRIBUTIONS

  1. a new inception-like convolutional network-in-network structure is proposed, which consists of convolution and rectified linear unit (ReLU) layers only. That is, pooling and subsampling layer are excluded that reduce feature map size, because decimated features are not helpful at the reconstruction stage. Hence, it is able to do one-to-one (pixel wise) matching at the inner network and also intuitive analysis of feature map correlation.
  2. Proposed architecture is applied to several pixel-wise labeling and restoration problems and it is shown to provide comparable or better performances compared to the state-of-the-art methods.

METHOD

The network structure is inspired by Inception. The comparison of the structure is illustrated in the following figure.

Pooling is removed in the proposed inception module and a larger size kernel instead is added to widen the receptive field which might have been reduced by the removal of pooling. The main inspiration of such modification is to maintain the large receptive field while keep the resolution of output same with input resolution at the same time.

SOME IDEAS

As the network removes the operation that reduces the resolution of the feature maps, both forward and backward propagation could be very slow if the input size is large.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值