Reading Note: Interpretable Convolutional Neural Networks

TITLE: Interpretable Convolutional Neural Networks

AUTHOR: Quanshi Zhang, Ying Nian Wu, Song-Chun Zhu

ASSOCIATION: UCLA

FROM: arXiv:1710.00935

CONTRIBUTION

  1. Slightly revised CNNs are propsed to improve their interpretability, which can be broadly applied to CNNs with different network structures.
  2. No annotations of object parts and/or textures are needed to ensure each high-layer filter to have a certain semantic meaning. Each filter automatically learns a meaningful object-part representation without any additional human supervision.
  3. When a traditional CNN is modified to an interpretable CNN, experimental settings need not to be changed for learning. I.e. the interpretable CNN does not change the previous loss function on the top layer and uses exactly the same training samples.
  4. The design for interpretability may decrease the discriminative power of the network a bit, but such a decrease is limited within a small range.

METHOD

The loss for filter is illustrated in the following figure.

Framework{: .center-image .image-width-480}

A feature map is expected to be strongly activated in images of a certain category and keep silent on other images. Therefore, a number of templates are used to evaluate the fitness between the current feature map and the ideal distribution of activations w.r.t. its semantics. The template is an ideal distribution of activations according to space locations. The loss for layers is formulated as the mutual information between feature map X and templates T .

Lossf=MI(X;T)

the loss can be re-written as

Lossf=H(T)+H(T'={T,T+|X})+xp(T+,x)H(T+|X=x)

The first term is a constant denoting the piror entropy of T+ . The second term encourages a low conditional entropy of inter-category activations which means that a well-learned filter needs to be exclusively activated by a certain category and keep silent on other categories. The third term encorages a low conditional entropy of spatial distribution of activations. A well-learned filter should only be activated by a single region of the feature map, instead of repetitively appearing at different locations.

SOME THOUGHTS

This loss can reduce the redundancy among filters, which may be used to compress the model.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
训练可解释的卷积神经网络是通过区分不同的类别来实现的。 卷积神经网络(CNN)是一种用于图像识别和分类任务的深度学习模型。然而,CNN的内部工作方式往往被认为是黑盒子,难以解释其决策过程和分类结果。为了提高CNN的解释性,可以通过不同iating算法来训练可解释的CNN。 不同iating是一种梯度优化方法,它通过梯度反向传播来优化网络的参数。在CNN中,不同iating的关键思想是通过最小化特定类别的损失函数来训练网络,从而鼓励网络关注于这个类别的特征。 通过不同iating类别,我们可以训练网络更加关注于区分不同类别的特征。这样训练出的网络能够通过可解释的方式较好地解释其决策过程。例如,在图像分类任务中,我们可以选择一些代表性的类别,如猫和狗,然后通过最小化猫和狗类别的损失函数来训练网络。这将使网络更加关注于猫和狗之间的区别,从而使其更容易解释其分类结果。 此外,还可以使用可视化方法来进一步解释训练出的CNN。通过可视化网络的卷积层和特征图,我们可以看到网络在不同类别上的激活模式,从而理解网络是如何学习到这些特征的。 总而言之,通过不同iating类别并结合可视化方法,我们可以训练出更加可解释的卷积神经网络,更好地理解其决策过程和分类结果。这将对深度学习模型的解释性研究和应用有着重要的意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值