dp/递归 Tri Tiling

这篇博客探讨了如何利用动态规划方法来计算3xN矩形用2x1的多米诺骨牌进行铺砌的方式数量。通过分析每个3x2的子问题,逐步递推得到3xn的解,确保不重复不遗漏。文中给出了样例输入和输出,并解释了状态转移方程,为理解动态规划提供了一个直观的应用案例。
摘要由CSDN通过智能技术生成

Problem Description:

In how many ways can you tile a 3xn rectangle with 2x1 dominoes? Here is a sample tiling of a 3x12 rectangle.
在这里插入图片描述

Input:

Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 ≤ n ≤ 30.

Output:

For each test case, output one integer number giving the number of possible tilings.
Sample Input:
2
8
12
-1
Sample Output:
3
153
2131

在这里插入图片描述
类比上楼梯的dp 我们现在要找到3*n的上一个状态(可以是填满的3*2,除去前面所有情况的填满的3*4,除去前面所有情况的填满的3*6…,除去前面所有情况的填满的3*n),上个状态必定是3乘一个偶数,这样“上个状态”不重不漏。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值