【算法谜题】夜过吊桥

问题描述:在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时通过。如果各自单独过桥的话,四人所需要的时间分别是1,2,5,10分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,你如何设计一个方案,让用的时间最少。


首先,下面几句话是显然的:

1.每个人都需要过桥

2.最慢的两个人过桥后永远不会回来(因为不会有人需要他们帮着过桥,也不会需要他们送手电筒)

3.那么这个送回手电筒的人一定是右边最快的(如果不是最快的在某一轮来看绝对不是最好的选择)

4.最慢的两个人过桥必须有更快的人陪同或者对岸有更快的人(第二条推出)


因而有两种解决方案(运送最慢两人)

1.最快和最慢的人过桥,最快的回来,不断重复这个步骤(贪心法)

2.最快和次快的过桥,最快的回来,两个最慢的过桥,次快回来


最佳方案:
  1) 如果N=1、2,所有人直接过桥。
  2) 如果N=3,由最快的人往返一次把其他两人送过河。
  3) 如果N≥4,设A、B为走得最快和次快的旅行者,过桥所需时间分别为a、b;而X、Y为走得最慢和次慢的旅行者,过桥所需时间分别为x、y。那么
    当2b(方案2)>=a+y(方案1)时,使用方案1将X和Y移动过桥;
    当2b<a+y时,使用方案2将X和Y移动过桥;
这样就使问题转变为N-2个旅行者的情形,从而递归解决之。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值