Problem F. Ricky队形
时间限制 1000 ms
内存限制 256 MB
题目描述
Ricky班里有n(2<=n<=100000)个人,每个人有一个学号ai(1<=ai<=n),保证学号ai互不相同。Ricky手里有一张班级合影,他发现虽然大家是按身高从低到高排好队的,但如果按学号看的话却不一定是从小到大,他想看一看如果按照学号来看,这个队排的有多乱。Ricky把混乱度定义为队列中逆序对的个数,即:如果从前往后看,大家正好是按照学号从小到大排列的,那逆序对为0个,混乱度为0;而每能找到两个人形成了学号大同学的在前,学号小的在后(即i < j且ai > aj),就称其为一个逆序对,混乱度计数也要加1。由于Ricky班里人可能很多,Ricky实在数不过来了,现在告诉你合影上同学们的学号(按从前往后),请你帮忙编写程序计算一下混乱度,满足一下Ricky的好奇心。
输入数据
第一行有一个整数n(2<=n<=100000),表示Ricky班上的人数; 第二行有n个整数a1,a2,…,an(1<=ai<=n),表示合影上同学们的学号。
输出数据
输出一个整数,表示合影上排列的混乱度(逆序对个数)
样例输入
5
1 3 4 2 5
样例输出
2
思路:
利用归并算法中的“并”,在并的时候,前后两个被排序好的数组会按照下标依次比较大小,

代码:
#include<iostream>
using namespace std;
int n;
#define ll long long
ll nums[100001];//待归并的
ll arr[100001]; //归并后的
ll cnt;//混乱程度
void mergeSort(int l, int r) {
if (l == r) return;
int mid = (l + r) / 2;
mergeSort(l, mid);
mergeSort(mid + 1, r);
//开始归并
int i = l, j = mid + 1, k = 0;
while (i <= mid && j <= r) {
if (nums[i] > nums[j]) {
cnt += mid + 1 - i;
arr[k++] = nums[j++];
}
else arr[k++] = nums[i++];
}
while(i<=mid) arr[k++] = nums[i++];
while(j<=r) arr[k++] = nums[j++];
//救命!原来这一步是关键:必须更新原来的nums数组
for (int i = 0, j = l; j <= r; i++, j++) nums[j] = arr[i];
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> nums[i];
}
mergeSort(0, n - 1);
for (int i = 0; i < n; i++) {
cout<< arr[i]<<" ";
}
cout <<endl<< cnt;
}
本文介绍了一种使用归并排序算法解决Ricky队形问题的方法,该问题旨在计算一组学生按照学号排列时的混乱度,即逆序对的数量。通过递归地将数组分成更小的部分进行排序,并在合并过程中计算逆序对数量。
343

被折叠的 条评论
为什么被折叠?



