把csdn当作笔记本的属于是…
Problem E. 最佳课题选择
时间限制 1000 ms
内存限制 128 MB
题目描述
Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择。由于课题数有限,Matrix67不得不重复选择一些课题。完成不同课题的论文所花的时间不同。具体地说,对于某个课题i,若Matrix67计划一共写x篇论文,则完成该课题的论文总共需要花费Ai*x^Bi个单位时间(系数Ai和指数Bi均为正整数)。给定与每一个课题相对应的Ai和Bi的值,请帮助Matrix67计算出如何选择论文的课题使得他可以花费最少的时间完成这n篇论文。
输入数据
第一行有两个用空格隔开的正整数 n 和 m, 分别代表需要完成的论文数和可供选择的课题数。
以下 m 行每行有两个用空格隔开的正整数。其中,第 i 行的两个数分别代表与第 i 个课题相对应的时间系数 Ai 和指数 Bi 。
对于 30 的数据 ,n≤10,m≤5;
对于100%的数据 ,n≤200,m≤20,Ai≤100,Bi≤5 。
输出数据
输出完成 n 篇论文所需要耗费的最少时间。
样例输入
10 3
2 1
1 2
2 1
样例输出
19
#include <iostream>
using namespace std;
#define ll long long
int m;//m个课题
int n;//n篇论文
int a[201], b[201];//时间系数
ll c[21][201]; //c[i][j]表示第j种论文一共i篇的消耗时间
//这道题最大十进制量级为13次方,因此采用longlong(大于九次方都用long long)
ll f[21][201];//转移方程:f[i][j]表示前i个课题,写j篇论文的最小耗时
int main() {
cin >> n >> m;
for (int i = 1; i <= m; i++) {
cin >> a[i] >> b[i];
}
//初始化
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = c[i][j] = a[i] * pow(j, b[i]);
}
}
//开始转移方程
for (int i = 2; i <= m; i++) {//前j种类型
for (int j = 1; j <= n; j++) { //前j篇论文,求最小时间
for (int k = 0; k <= j; k++) { //前i篇的论文数量
f[i][j] = min(f[i][j], f[i - 1][k] + c[i][j - k]);
}
}
}
cout << f[m][n];
}
优化代码:将二维的转化为一维的,首先用第一种类型初始化,然后从后往前遍历。
//完全背包问题:物品数量无限,背包容量有限
#include <iostream>
using namespace std;
#define ll long long
int m;//m个课题
int n;//n篇论文
int a[201], b[201];//时间系数
ll f[201];
int main() {
cin >> n >> m;
for (int i = 1; i <= m; i++) { //注意是从1开始到,不使用0
cin >> a[i] >> b[i];
}
//初始化
for (int i = 1; i <= n; i++) {
//遍历论文数
f[i] = a[1] * pow(i, b[1]);//假设都是由第一种论文写出来的
}
//递归方程
for (int i = 2; i <= m; i++) {//遍历所有种类
for (int j = n; j > 0; j--) { //0取不到
for (int k = 0; k <= j; k++) {
ll p = pow(k, b[i]) * a[i];
f[j] = min(f[j - k] + p, f[j]);
}
}
}
cout << f[n];
}