<think>嗯,我现在要解决这个问题,首先得理解题目要求。题目说的是,给定一个二叉树的顺序存储结构,要求设计一个算法逆序输出从根节点到层序编号为i的节点的路径。如果该节点不存在,就输出“data error”。那这个顺序存储结构是怎么样的呢?比如说,用数组来存储二叉树,按照层序的方式排列节点,空节点用#表示。例如样例中的第一个输入,元素个数是15,编号是7,对应的数组是A#B###C#######D。输出是CBA,说明路径是根到7号节点的路径逆序。那首先得搞清楚层序编号对应的数组下标是怎样的。
首先,层序编号通常是从1开始的。比如根节点是1,左孩子是2,右是3,依此类推。那数组的索引可能也是从1开始吗?或者是不是数组的索引是0开始,而层序编号是1开始?比如输入样例中的第一个数组有15个元素,n=15,所以可能索引是0到14,而层序编号m是1到15?比如当m=15的时候,对应的数组索引是14?比如样例中的第一个输入,数组是A#B###C#######D,总共有15个元素。那么层序编号15对应的数组元素是D,而根是1(即数组索引0)。路径是根到D的路径,逆序输出就是D的路径到根,所以是D、C、B、A吗?样例中的输出是CBA,但输入是m=7的时候。这可能需要再仔细分析。
比如第一个输入样例,数组元素是n=15个,元素是:A # B # # # C # # # # # # D。那数组的索引是0到14。层序编号是从1到15。所以当m=7的时候,对应的数组索引是6。此时数组中的元素是C。那路径是从根(1号节点,数组0号元素A)到7号节点的路径。那么如何找到这条路径?
首先,需要确定每个节点的父节点。在顺序存储的二叉树中,层序编号为m的节点的父节点编号是m//2(如果m是偶数的话,父节点是m/2;如果是奇数的话,比如m=3,父节点是1)。所以,给定某个m节点,我们可以不断找父节点,直到根节点(编号1),从而得到路径上的所有节点。然后逆序输出这些节点的值即可。
那问题分解为几个步骤:
1. 输入处理:读取n和m,然后读取数组。比如输入的数组元素可能包含多个字符,每个字符代表一个节点,顺序是按层序排列的。例如第一个样例的数组元素是"A#B###C#######D",即数组长度为15,每个元素依次是索引0到14。层序编号m对应的数组索引是m-1。比如m=7,对应索引6。如果数组索引为6的元素是'#',或者m超过n的话,则说明节点无效,输出错误信息。
所以首先,要判断m是否有效。有效的条件是:m<=n,并且数组中对应的字符不是#。例如第一个样例中,m=7,n=15,所以有效。数组中的索引6是C,不是#,所以有效。此时路径是7号节点→父节点3→父节点1→根。路径上的节点是7→3→1。对应的数组元素是C,B,A。逆序输出就是C B A → CBA,与样例一致。
那第二个样例,输入n=13,m=5。数组是ABC#DE###F##G。即数组元素索引0到12。m=5对应的索引是4。数组中的元素是E吗?因为数组元素顺序是:A B C # D E # # # F # # G。索引0是A(层序1),索引1是B(层序2),索引2是C(层序3),索引3是#(层序4,无效),索引4是D(层序5?或者可能层序结构需要重新考虑?)
或者可能顺序存储是按照完全二叉树的结构,不管有没有左右孩子,都按层序填充数组。例如,根是层序1,放在数组索引0。层序2是左孩子,索引1;层序3是右孩子,索引2。层序4是层序2的左孩子,索引3,依此类推。那么,当数组中的某个元素是#,表示该节点不存在,所以其子节点的位置可能被跳过?或者顺序存储的结构中,不管是否为空,父节点的左右孩子的位置都被保留?比如,如果父节点是#,那么它的左右孩子是否在数组中存在?
这里可能需要明确顺序存储结构的定义。通常,顺序存储结构是按完全二叉树的方式存储的,即不管节点是否为空,都按照层序填充数组的位置。例如,如果某个节点不存在,那么其对应的数组元素为#,但它的子节点的位置仍然会被保留在数组中对应的位置。因此,层序编号对应的数组索引是m-1,不管前面的节点是否存在。例如,如果父节点是#,那么它的子节点的编号可能仍存在,但对应的数组元素可能也是#,所以该子节点无效。
因此,判断m是否有效的条件是:m<=n,并且数组中第m-1个元素不等于#。
那问题的解决步骤如下:
对于每组输入:
1. 检查m是否大于0,且m<=n。否则输出data error。
2. 检查数组中的第m-1个元素是否为#。如果是,输出data error。
否则,收集路径:
从m开始,循环找到其父节点,直到到达根节点(层序编号1)。将路径上的节点的值收集起来,最后逆序输出。
例如,当m=7时:
7的父节点是3(7//2=3),3的父节点是1(3//2=1),1的父节点不存在。所以路径是7→3→1。对应的数组元素是索引6(C)、索引2(B)、索引0(A)。收集顺序是C、B、A,逆序就是CBA。
另一个例子,当m=15时:
数组元素索引14是D。父节点是7(15//2=7),父节点的元素是C。父节点7的父是3,元素是B。父节点3的父是1,元素是A。所以路径是D→C→B→A,逆序是ABCD?但样例中输出是DCBA。哦,原题中的输出样例中当m=15的时候,输出是DCBA。这说明路径的收集顺序是从根到该节点,但逆序输出。或者说,当收集路径时,是从该节点开始,逐级向上找父节点,直到根,这样收集的顺序是该节点、父节点、祖父……根。逆序之后就是根到该节点的顺序。比如,路径收集的顺序是D→C→B→A,逆序之后是A→B→C→D,输出DCBA?这似乎矛盾。或者我的思路有问题?
哦,原题中的例子,当输入层序编号15时,路径的逆序输出是DCBA。这说明路径的顺序是从根到该节点的顺序是A→B→C→D,而逆序输出为D→C→B→A。那如何得到这样的路径?
或者我的理解有误。可能父节点计算的方式不正确。例如,层序编号的父节点计算方式可能不是简单的除以2。可能要看层序的结构。比如,在完全二叉树中,父节点的编号是i//2。例如,节点i的父节点是i//2。例如,i=15,父节点是7,i=7父是3,i=3父是1。所以路径是1→3→7→15。那么,路径的顺序是根到该节点的顺序是A→B→C→D,所以逆序输出是D C B A → DCBA。这与样例的输出一致。所以,在收集路径的时候,应该是将各层节点按照从根到目标节点的顺序存储,然后逆序输出。或者,是否收集的顺序是目标节点到根的顺序,然后直接输出?
比如,当目标节点是15,那么路径是15→7→3→1,对应的元素是D→C→B→A。这样,直接按顺序输出就是DCBA,也就是样例中的结果。哦,这似乎正确。那这说明,收集的路径是从目标节点到根的顺序,而题目要求逆序输出该路径。因此,原题中的例子是当m=15时,路径是D→C→B→A,直接输出DCBA。而另一个例子m=7,路径是C→B→A,输出CBA。那这说明,收集的顺序是目标节点到根的顺序,然后直接输出即可,不需要逆序。或者题目中的“逆序输出”指的是路径顺序的反转?
题目描述中的例子,当路径是根到层序编号为15的路径为D的路径,逆序输出DCBA。这说明根到该节点的路径是A→B→C→D,逆序之后是D→C→B→A。所以,正确的做法是收集路径的顺序是根到该节点的顺序,然后逆序输出。比如,在例子中,根是A,到D的路径是A→B→C→D,逆序输出就是DCBA。所以,收集路径的时候,应该收集根到目标节点的顺序,然后逆置这个顺序,输出每个节点的值。
那如何得到根到该节点的路径?
这就需要找到该节点的所有祖先,从根到该节点的顺序。例如,对于节点m=15,其父是7,父是3,父是1。所以路径是1→3→7→15。对应的数组元素是A、B、C、D。所以,收集的顺序应该是1、3、7、15,对应的值A、B、C、D。然后逆置,得到D→C→B→A,输出DCBA。
那么,如何收集这些节点的顺序?
可以逆向收集,然后反转。例如,从目标节点开始,向上找父节点,直到根节点,将这些节点的值按顺序存入列表。例如,对于m=15,得到的列表是15→7→3→1,对应的值D、C、B、A。然后直接按这个顺序输出,即DCBA。这样是否正确?
是的。所以,收集的顺序是目标节点到根,然后直接输出即可。因为题目要求逆序输出根到该节点的路径。例如,根到该节点的路径顺序是A→B→C→D,逆序是D→C→B→A。而如果我们收集的顺序是D→C→B→A,那么直接输出即可。因此,正确的做法是从目标节点开始,不断找父节点,直到根,将这些节点的值收集起来,然后直接输出即可,不需要反转。
那这个过程可以通过循环或者递归实现。例如,对于给定的m,只要m不等于1,就找父节点m//2。例如,m=15,父是7,父是3,父是1。将这些m值存入列表,然后取对应的数组元素。
所以具体步骤:
1. 输入n和m。
2. 检查m的有效性:m是否在1到n之间,且数组[m-1]不是#。否则输出错误。
3. 如果有效,则收集路径:
初始化一个空列表。当前节点是m。
循环:
- 将数组[current-1]的值加入列表。
- current = current//2 (当current是偶数和奇数的情况?比如,对于current=3,父是1;current=7,父是3)
直到current ==1,然后将根节点的值加入列表。或者,在循环中处理?
例如,对于m=7,current=7 →加入数组[6](C)→current=3 →加入数组[2](B)→current=1 →加入数组[0](A)→退出循环?或者,当current变成0时?
或者,循环的条件是current >=1:
current = m
path = []
while current >=1:
if current >n或者数组[current-1]是#的话,说明路径有问题?或者已经在步骤2中确保?
不,步骤2已经确保m的有效性,所以在收集路径时,每个父节点必然存在吗?
比如,如果m=7是有效的,那么其父节点3是否必须存在?
比如,在数组元素中,当父节点是3时,对应的数组索引是2是否是有效的?例如,假设父节点的值为#,那么说明该路径无效?
比如,假设有一个情况,m的父节点是#,那么该路径其实不存在,即使m本身有效。但根据步骤2中,只有m对应的节点是有效的,而父节点可能无效?
例如,假设数组是A##,n=3。m=3对应的元素是第三个元素,假设是有效(非#),那么父节点是1。如果数组索引0是A,那么父节点存在。所以这种情况下路径有效。但如果父节点的元素是#,那么该路径是否有效?
比如,数组是A#B,n=3。层序编号3的节点是B,有效。父节点是1(数组索引0,A),有效。所以路径是B→A,输出BA。但是如果父节点的元素是#,比如数组是A##,那么m=3的元素是#,那么在步骤2就会被过滤。所以步骤2的检查已经确保m对应的节点有效,但父节点的有效性是否需要检查?
例如,假设有一个数组元素为A##B。n=4,层序编号4的节点是B。m=4是有效的。但父节点是2,层序编号2对应的数组元素是#。所以父节点无效。此时,虽然m本身有效,但路径上的父节点无效。这时如何处理?
这种情况下,路径是否存在?比如,根据顺序存储的规则,层序编号为2的节点是存在的(数组元素是#),但该节点本身为空。所以该路径实际上是无效的。因此,当m的有效性检查通过,但路径上某个父节点是#,这时候应该视为无效吗?
这可能导致错误。例如,在样例输入中,如果有一个情况,m的父节点是#,那么即使m本身有效,路径不存在,应该输出错误吗?
这似乎是一个问题。例如,假设数组是A##D,n=4。层序编号4对应的元素是D,非#,所以m=4有效。父节点是2,对应的元素是#。此时,路径是D的父节点是2(无效),所以该路径不存在。因此,这种情况下应该输出错误吗?
原题中的问题描述中,可能隐含了父节点的有效性。也就是说,当路径上存在某个父节点是#时,该路径无效。因此,在算法中,除了检查m的有效性之外,还需要检查路径上的所有父节点是否有效(即不为#)。
这样,步骤应该是:
在收集路径时,除了m有效之外,每个父节点也必须有效。否则,虽然m有效,但路径上的某个节点是无效的,整个路径无效,应输出data error。
例如,假设数组是A##D,n=4,m=4。虽然m对应的元素是D,有效,但父节点2对应的元素是#,无效,所以路径不存在,应输出错误。
这似乎合理。那么,如何修改步骤?
需要:
步骤2不仅要检查m是否有效,还要检查路径上的所有父节点是否有效。
这可能比较复杂,因为路径可能较长,但必须确保每个父节点都存在。
例如,对于给定的m,在收集路径的时候,必须依次检查每个父节点的有效性。如果其中任何一个父节点无效(即对应的数组元素是#),则整个路径无效,输出错误。
例如,在之前的例子中,当m=4的父节点是2,其元素是#,那么即使m有效,整个路径无效。
因此,算法步骤需要调整为:
1. 输入n和m,数组。
2. 检查m是否在1到n的范围内。否则错误。
3. 检查数组[m-1]是否是#。如果是,错误。
4. 初始化current为m。路径列表。
5. 循环:
a. current的父节点是parent = current // 2 (当current为偶数时,父节点是current/2;当current为奇数时,父节点是current//2?例如,current=3的父节点是1,3//2=1;current=2的父节点是1;current=4的父节点是2,4//2=2;current=5的父节点是2,5//2=2。是的,不管current是左孩子还是右孩子,父节点的层序编号是current//2。例如,层序编号i的父节点是i//2,无论i是左还是右。)
b. 将current的值对应的数组元素加入路径列表。
c. current = parent.
d. 重复直到current ==0?
e. 每次循环需要检查current是否有效:即current必须>=1,并且数组[current-1]不是#。
6. 当current变为0时,或者循环结束后,是否到达根节点?
例如,当current=1时,父节点是0,此时循环终止。而根节点的父节点不存在,所以需要将根节点的值加入列表?
或者,在循环中处理:
例如,循环条件是current >=1:
path = []
current = m
while current >=1:
if current >n or array[current-1] == '#':
return error.
path.append(array[current-1])
if current ==1:
break.
current = current //2
这样,当current=1时,处理完后跳出循环。
例如,对于m=7:
current=7 →有效,加入C →current=3.
current=3 →有效,加入B →current=1.
current=1 →有效,加入A →退出循环。
路径列表是[C, B, A]。输出时直接顺序输出,得到CBA,与样例一致。
另一个例子,当m=15:
current=15 →有效,加入D →current=7.
current=7 →有效,加入C →current=3.
current=3 →有效,加入B →current=1.
current=1 →有效,加入A →退出循环.
路径列表是[D, C, B, A] →输出DCBA,与样例一致。
那如果在路径收集过程中,发现某个current对应的元素是#,那么整个路径无效。例如,假设m=4,父节点是2,如果array[1]是#,那么在处理current=2时,发现array[1]是#,此时应输出错误。
因此,步骤5的循环中,每次处理current时,都需要检查current的有效性。
所以,修改后的步骤:
对于每组输入:
1. 输入n和m,数组elements。
2. 检查m是否在1..n。否则输出错误。
3. 检查elements[m-1]是否是#。如果是,错误。
4. 初始化current = m,path = [elements[m-1]].
5. current = m //2.
6. 循环,直到current ==0:
a. 检查current是否在1..n的范围内。如果不在,说明路径无效,输出错误。
b. 检查elements[current-1]是否是#。如果是,输出错误。
c. 将elements[current-1]加入path列表。
d. current = current //2.
7. 当循环结束后,path中的元素顺序是m的元素,父元素,祖父元素…根元素。所以输出path中的元素连接起来即可。
例如,m=7:
current=7 →加入C.
current=3 →检查有效,加入B.
current=1 →检查有效,加入A.
current=0 →循环结束.
path是 [C, B, A]. 输出CBA。
那问题转化为,如何循环处理current的父节点,直到根节点。同时,每次处理父节点时检查是否有效。
例如,在循环中,current的初始值是m//2。那可能需要调整循环的方式。
或者,将循环的条件设置为current >=1:
例如:
current = m
path = []
while True:
if current <1 or current >n or elements[current-1] == '#':
# 无效,输出错误
print("data error")
break
path.append(elements[current-1])
if current ==1:
break
current = current //2
这样,每次循环处理current,并检查其有效性。例如:
当m=7时:
current=7 →有效,加入C.
current=3 →有效,加入B.
current=1 →有效,加入A →退出循环.
path是 [C, B, A].
当m=15时:
current=15 →有效,加入D.
current=7 →有效,加入C.
current=3 →有效,加入B.
current=1 →有效,加入A →退出循环.
path是 [D, C, B, A].
当有一个父节点无效时,比如current=2的元素是#:
假设m=4,elements[3]是有效(非#),但父节点是2,elements[1]是#。那么:
current=4 →有效,加入元素。
current=2 →检查elements[1]是# →无效,输出错误。
因此,这种情况下,虽然m有效,但路径中存在无效父节点,输出错误。
这样,处理过程是正确的。
所以,算法的大致思路是:
对于每个测试用例:
- 检查m的有效性(1<=m<=n,并且对应的元素不是#)。
- 然后,从m开始,不断取父节点,直到根节点。每个父节点必须存在(元素不是#)。
- 收集路径上的所有元素,按顺序是从m到根的顺序,直接输出即可。
因此,代码的大致步骤如下:
读取n和m,然后读取数组元素列表。例如,输入的数组是类似"A#B###C#######D",需要将其拆分为字符列表。注意,输入的每个元素可能是一个单独的字符,例如,输入的字符串可能有n个字符,每个字符代表一个元素。
然后,处理:
if m <1 or m >n:
print("data error")
elif elements[m-1] == '#':
print("data error")
else:
path = []
current = m
valid = True
while True:
if current <1 or current >n:
valid = False
break
if elements[current-1] == '#':
valid = False
break
path.append(elements[current-1])
if current ==1:
break
current = current //2
if valid:
print(''.join(path))
else:
print("data error")
例如,第一个样例中的输入:
n=15,m=7.
elements数组的索引0到14的元素是:
0: A
1: #
2: B
3: #
4: #
5: #
6: C
7: #
8: #
9: #
10: #
11: #
12: #
13: #
14: D
当处理m=7时:
current=7 →索引6,元素C,有效。加入path → [C]
current=7//2=3.
检查current=3 →索引2,元素B,有效 →加入path → [C, B]
current=3//2=1 →索引0,元素A,有效 →加入path → [C,B,A]. current=1,循环结束。输出CBA。
对于第二个输入样例:
13 5
ABC#DE###F##G
数组元素是:
索引0:A,1:B,2:C,3:#,4:D,5:E,6:#,7:#,8:#,9:F,10:#,11:#,12:G.
m=5 →current=5 →索引4,元素D。有效,加入path → [D].
current=5//2=2 →索引1,元素B?或者索引是2的元素是C?
哦,current=5//2=2(因为5//2在整数除法中是2)。所以current=2 →索引1的元素是B?或者索引是2的元素?
等一下,数组索引是0-based,层序编号是1-based。所以,current是层序编号。比如current=5对应的数组索引是4。current=2对应的数组索引是1。是的。所以,对于current=5:
current=5 →索引4,元素D,有效。加入path →D.
current=5//2=2 →层序2对应的索引1,元素B。有效 →加入path →D,B.
current=2//2=1 →索引0,元素A →加入path →D,B,A. current=1,循环结束。输出DBA?但样例的输出是DBA?
样例中的第二个输入对应的输出是DBA。那输入是:
n=13,m=5。数组元素是ABC#DE###F##G。拆分成数组的话:
索引0: A
1: B
2: C
3: #
4: D
5: E
6: #
7: #
8: #
9: F
10: #
11: #
12: G.
层序编号5对应的索引4的元素是D。父节点是5//2=2 →层序编号2对应的索引1的元素是B。父节点是2//2=1 →A。所以路径是D,B,A →输出DBA,与样例一致。
所以,代码逻辑正确。
现在需要考虑输入的处理。输入的数组是作为第二行的输入字符串。例如,输入样例中的第二行是"ABC#DE###F##G"。这需要拆分成字符数组。每个字符代表一个元素。例如,对于n=13,输入字符串的长度应该是13。所以,要确保输入的字符串长度等于n。否则可能有问题。例如,如果有空格或其他分隔符?根据题目描述的输入格式,第二行为数组各元素,所以应该是连续的字符,每个字符代表一个元素,没有分隔符。例如,样例中的第一个输入中的数组元素为"A#B###C#######D",长度是15。
因此,在处理输入时,应该将第二行的输入字符串按每个字符拆分,得到一个列表。例如,s = input().strip()
elements = list(s)
然后检查len(elements)是否等于n。如果输入的字符串长度不等于n,可能需要视为错误?题目中可能假设输入是合法的。所以代码中可能不需要处理这种情况,直接取前n个字符或者填充?
但题目描述中说明,输入有多组数据,每组数据的两行分别是n和m,以及数组各元素。所以,可以认为输入的数组元素个数等于n。例如,第一组输入n=15,第二行的字符串长度必须为15。
在代码中,需要将输入的字符串转换为列表,并确保其长度为n。否则,如何处理?比如,用户输入的字符串长度大于n,如何处理?或者题目保证输入正确?
根据题目描述,输入的数据可能是正确的。所以,代码中假设输入的数组元素的字符串长度等于n。因此,处理时可以直接将字符串转为列表。
所以,代码的大致结构:
处理多组输入:
在Python中,可以用循环读取输入。例如,使用sys.stdin读取所有行,然后逐组处理。
但题目中的输入可能包含多组测试数据。每组数据包括两行:
第一行是n和m。
第二行是数组元素。
所以,代码可能需要循环读取这两行,直到没有输入。
例如,在Python中:
import sys
for line in sys.stdin:
line1 = line.strip()
if not line1:
continue
n, m = map(int, line1.split())
elements = list(sys.stdin.readline().strip())
# process...
这样处理可能会遇到问题,比如输入的行数是否为偶数?
或者,将输入的所有行按顺序处理,每组数据两行。例如,读取所有行到一个列表中,然后每次取两行处理。
在代码中,可以这样处理:
import sys
lines = [line.strip() for line in sys.stdin if line.strip()]
idx =0
while idx < len(lines):
line1 = lines[idx]
idx +=1
n, m = map(int, line1.split())
if idx >= len(lines):
elements = []
else:
elements_str = lines[idx]
idx +=1
elements = list(elements_str)
# process...
然后处理每组数据。
现在,代码的整体结构大致清晰。
综上,算法步骤如下:
对于每组输入:
1. 检查m的有效性:是否在1..n,且对应的元素不是#。
2. 如果无效,输出data error.
3. 否则,从m开始,依次找父节点,直到根节点,同时检查每个父节点是否有效。
4. 如果路径中的所有节点有效,收集其值,输出路径顺序的连接字符串。
5. 否则,输出data error.
现在,编写Python代码:
例如:
在Python中:
import sys
def main():
lines = [line.strip() for line in sys.stdin if line.strip()]
idx = 0
while idx < len(lines):
# 读取n和m
line1 = lines[idx]
idx +=1
n, m = map(int, line1.split())
# 读取数组元素
if idx >= len(lines):
elements = []
else:
elements_str = lines[idx]
idx +=1
elements = list(elements_str)
# 检查数组长度是否为n
if len(elements) != n:
print("data error")
continue
# 检查m的有效性
if m <1 or m >n:
print("data error")
continue
if elements[m-1] == '#':
print("data error")
continue
# 收集路径
path = []
current = m
valid = True
while True:
if current <1 or current >n:
valid = False
break
if elements[current-1] == '#':
valid = False
break
path.append(elements[current-1])
if current ==1:
break
current = current //2
if valid:
print(''.join(path))
else:
print("data error")
这样处理应该可以解决问题。
现在测试样例:
第一个输入样例:
15 7
A#B###C#######D →转换为列表后长度是15。处理m=7:
elements[6]是C。有效。收集路径:
current=7 →加入C →current=3.
current=3 →elements[2]是B →加入 →current=1.
current=1 →elements[0]是A →加入 →退出循环。path是 ['C','B','A'] →输出CBA.
第二个输入样例:
13 5
ABC#DE###F##G →elements的长度是13。m=5 →elements[4]是D。有效。路径:
current=5 →D →current=2.
current=2 →elements[1]是B →current=1 →elements[0]是A →path ['D','B','A'] →输出DBA.
其他情况,比如父节点无效的情况:
例如,n=4,m=4,数组是A##D。检查:
m=4<=4,elements[3]是D。有效。收集路径:
current=4 →D →current=2.
elements[1]是# →无效 →输出data error.
所以,此时输出错误。
综上,代码应该正确。</think>要解决这个问题,我们需要逆序输出从根节点到指定层序编号节点的路径。以下是详细的解决方案:
### 方法思路
1. **输入处理**:读取节点个数 `n` 和目标层序编号 `m`,以及二叉树的顺序存储数组。
2. **有效性检查**:确保 `m` 在有效范围内且对应节点不为空(即不是 `#`)。
3. **路径收集**:从目标节点开始,逐级向上查找父节点,直到根节点,并检查路径上的每个节点是否有效。
4. **结果输出**:若路径有效,逆序输出路径上的节点值;否则输出错误信息。
### 解决代码
```python
import sys
def main():
lines = [line.strip() for line in sys.stdin if line.strip()]
idx = 0
while idx < len(lines):
# 读取n和m
line1 = lines[idx]
idx += 1
n, m = map(int, line1.split())
# 读取数组元素
if idx >= len(lines):
elements = []
else:
elements_str = lines[idx]
idx += 1
elements = list(elements_str)
# 检查数组长度是否正确
if len(elements) != n:
print("data error")
continue
# 检查m的合法性
if m < 1 or m > n:
print("data error")
continue
if elements[m-1] == '#':
print("data error")
continue
# 收集路径
path = []
current = m
valid = True
while True:
if current < 1 or current > n:
valid = False
break
if elements[current-1] == '#':
valid = False
break
path.append(elements[current-1])
if current == 1:
break
current = current // 2
if valid:
print(''.join(path))
else:
print("data error")
if __name__ == "__main__":
main()
```
### 代码解释
1. **输入处理**:使用 `sys.stdin` 读取所有输入行,并逐行处理。每组输入包括节点个数 `n` 和层序编号 `m`,以及二叉树的顺序存储数组。
2. **有效性检查**:检查 `m` 是否在合法范围内,并确保对应节点不为空。
3. **路径收集**:从目标节点开始,逐级向上查找父节点,同时检查每个父节点的有效性。有效节点值被收集到路径列表中。
4. **结果输出**:若路径有效,直接输出收集的路径(已逆序);否则输出错误信息。
该方法确保在每一步都验证节点有效性,保证了路径的正确性,从而正确逆序输出根到目标节点的路径。