题目:有数组penny,penny中所有的值都为正数且不重复。每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim(小于等于1000)代表要找的钱数,求换钱有多少种方法。
给定数组penny及它的大小(小于等于50),同时给定一个整数aim,请返回有多少种方法可以凑成aim。
测试样例:
[1,2,4],3,3
返回:2
使用三种方法实现:
一、暴力搜索方法
思路:使用penny[0]的个数为0,让penny[0....n-1
]组成aim的结果数记为res1
使用penny[0]的个数为1,让penny[0....n-1]组成aim-penny[0]的结果数记为res2
以此类推,将有所的res加起来就是最终的方法数。
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
//暴力搜索方法:
if(penny.size()==0||aim<0)
return 0;
return process1(penny,0,aim);
}
int process1(vector<int> arr,int index,int aim){
int res=0;
if(index==arr.size())
res=aim==0?1:0;
else{
for(int i=0;arr[index]*i<=aim;i++)
res+=process1(arr,index+1,aim-arr[index]*i);
}
return res;
}
public:
int countWays(vector<int> penny, int n, int aim) {
//暴力搜索方法:
if(penny.size()==0||aim<0)
return 0;
return process1(penny,0,aim);
}
int process1(vector<int> arr,int index,int aim){
int res=0;
if(index==arr.size())
res=aim==0?1:0;
else{
for(int i=0;arr[index]*i<=aim;i++)
res+=process1(arr,index+1,aim-arr[index]*i);
}
return res;
}
二、记忆搜索的方法
思路:观察暴力搜索方法,我们会发现在迭代的过程中有很多都是重复的index和aim,这就造成了冗余,我们用map记录,
index和aim这两个数作为key,它们对应相应的值value,并在下一次操作时有新的index和aim,我们先判断新的key是否已经存在,然后在进行操作。这种方法减少了暴力搜索带来的冗余,减少了时间复杂度。
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
//记忆搜索方法:
if(penny.size()==0||aim<0)
return 0;
int **map=new int*[n+1];
for(int i=0;i<n+1;i++)
map[i]=new int[aim+1];
for(int i=0;i<n+1;i++)
for(int j=0;j<aim+1;j++)
map[i][j]=-1;
return process2(penny,0,aim,map);*/
}
int process2(vector<int> arr,int index,int aim,int **map){
int res=0;
if(index==arr.size())
res=aim==0?1:0;
else{
int mapVal=0;
for(int i=0;arr[index]*i<=aim;i++){
mapVal=map[index+1][aim-arr[index]*i];
if(mapVal!=-1)
res+=mapVal==-1?0:mapVal;
else
res+=process2(arr,index+1,aim-arr[index]*i,map);
}
}
map[index][aim]=res==0?-1:res;
return res;
}
};
public:
int countWays(vector<int> penny, int n, int aim) {
//记忆搜索方法:
if(penny.size()==0||aim<0)
return 0;
int **map=new int*[n+1];
for(int i=0;i<n+1;i++)
map[i]=new int[aim+1];
for(int i=0;i<n+1;i++)
for(int j=0;j<aim+1;j++)
map[i][j]=-1;
return process2(penny,0,aim,map);*/
}
int process2(vector<int> arr,int index,int aim,int **map){
int res=0;
if(index==arr.size())
res=aim==0?1:0;
else{
int mapVal=0;
for(int i=0;arr[index]*i<=aim;i++){
mapVal=map[index+1][aim-arr[index]*i];
if(mapVal!=-1)
res+=mapVal==-1?0:mapVal;
else
res+=process2(arr,index+1,aim-arr[index]*i,map);
}
}
map[index][aim]=res==0?-1:res;
return res;
}
};
三、动态规划的方法
思路:生成一个行数为n,列数为aim+1的矩阵dp,dp[i][j]的含义是在使用penny[0,.....,i]货币的情况下组成的钱数j有多少种方法。
其中dp[0,...,n-1
][0]=1,因为当aim=0时,所有种类的货币组成aim的种类都是一种即penny[i]*0=aim 0<=i<=n-1;
其中,当j%penny[0]==0时,即j为penny[0]的倍数时,dp[0][j]=1,其余情况
dp[0][j]=0 0<=j<=aim+1
;
剩余的dp[i][j]=dp[i-1][j]+dp[i-1][j-penny[i]*1]+dp[i-1][j-penny[i]*2].....直到j-penny[i]*x<0
上式也可以简化:
dp[i][j]=dp[i-1][j]+dp[i][j-penny[i]],因为dp[i][j-penny[i]]=dp[i-1][j-penny[i]*2]+.....
class Exchange {
public:
int countWays(vector<int> penny, int n, int aim) {
//动态规划
int dp[n][aim+1];
for(int i=0;i<n;i++)
dp[i][0]=1;
for(int i=0;i<aim+1;i++){
if(i%penny[0]==0)
dp[0][i]=1;
else
dp[0][i]=0;
}
for(int i=1;i<n;i++)
for(int j=1;j<aim+1;j++){
if(j-penny[i]>=0)
dp[i][j]=dp[i][j-penny[i]]+dp[i-1][j];
else
dp[i][j]=dp[i-1][j];
}
return dp[n-1][aim];
}
public:
int countWays(vector<int> penny, int n, int aim) {
//动态规划
int dp[n][aim+1];
for(int i=0;i<n;i++)
dp[i][0]=1;
for(int i=0;i<aim+1;i++){
if(i%penny[0]==0)
dp[0][i]=1;
else
dp[0][i]=0;
}
for(int i=1;i<n;i++)
for(int j=1;j<aim+1;j++){
if(j-penny[i]>=0)
dp[i][j]=dp[i][j-penny[i]]+dp[i-1][j];
else
dp[i][j]=dp[i-1][j];
}
return dp[n-1][aim];
}