机器学习
测试小白在成长_耶
这个作者很懒,什么都没留下…
展开
-
使用sklearn做单机特征工程
转载自https://www.cnblogs.com/jasonfreak/p/5448385.html 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺失值计算 2.5 数据变换 2.6 回顾 3 特征选择 3.1 Filter 3.1.1 方差选择法 3.1.2 相关系数法转载 2020-06-28 11:35:59 · 132 阅读 · 0 评论 -
机器学习算法(一)基础知识
基础知识 需要准备知识: 第一层:通过算法学习了解基本原理 第二层:数学方面的推导 第三层:会用语言或者工具包解决问题,掌握一门语言,实现算法原型 第四层:会优化算法 纲要: 机器学习的几个基本概念 机器学习的实质:在输入空间到输出空间中的各种假设形成的假设空间中,去搜索一个假设,这个假设对当前数据拟合情况最好 机器学习方法的三要素 经验风险与结构风险 目标...原创 2020-01-03 17:01:29 · 459 阅读 · 0 评论 -
tensorflow2.0
清理废弃API 在训练方面:使用Keras和eager execution轻松构建模型。为研究提供强大的实验工具。 1.0通过session运行 一、tf.keras是构建和训练模型的核心高级API 二、Eager模式与自定义训练 Eager模式:直接迭代和直观调试 tf.GradientTape:求解梯度,自定义训练逻辑 三、tf.data 加载图片数据与结构化数据 四、tf.functio...原创 2019-11-15 19:13:02 · 218 阅读 · 0 评论 -
tensorflow使用
安装: 安装python64位 安装numpy pip install numpy 安装TensorFlow pip install tensorflow-gpu pip install tensorflow-cpu 例子: import tensorflow as tf import numpy as np #creat data x_data=np.random.rand(100...原创 2019-11-11 14:51:34 · 107 阅读 · 0 评论