C++ 二叉树中已知先序中序求后序的递归方法

本文详细解释并提供了使用C++实现将中序和先序遍历顺序转换为后序遍历顺序的程序逻辑。包括初始化输入、递归函数和主要的遍历过程。
#include <iostream>
using namespace std;

const int MaxSize=20;		//数组的最大尺寸
int p;					//一个临时的数字用来标记当前操作的数组的位置
char MidOrder[MaxSize];	//用来存储中序遍历顺序的数组
char PreOrder[MaxSize];	//用来存储先序遍历顺序的数组

//初始化的方法
void Init(){
	cout << "In-order:";
	cin >> MidOrder;
	cout << "Pre-order:";
	cin >> PreOrder;
	cout << "Post-order:";
	p=0;
}

//递归输出后序遍历的方法
void Find(char Mid[MaxSize]){
	int q;
	char temp[MaxSize];
    
	if (Mid[0]==NULL) return;

	for (int i=0;Mid[i]!='\0';i++){
		if (Mid[i]==PreOrder[p]){
			 q=i;	
			 //得出q
			 //即为当前数组中第q个是根节点
		}
	}

	for (i=0;i<q;i++){
		temp[i]=Mid[i];	//把根节点前面的节点存到t数组中
	}

	temp[q]='\0';		//标志字符串结束
	p++;

	Find(temp);			//在根节点前的子树继续进行后序遍历

	for (i=q+1;Mid[i]!='\0';i++)	//将节点后面的传入到temp数组中
		temp[i-q-1]=Mid[i];

	temp[strlen(Mid)-1-q]='\0';		//加上\0标志字符串的终点

	Find(temp);			//在根节点后的子树继续进行后序遍历	
	
	cout << Mid[q];		//最后输出根节点

	return;
}


int main(){
	Init();
	Find(MidOrder);
	cout<<endl;
}

### 构建二叉树并获取后序遍历 通过遍历和中遍历构建二叉树的过程涉及递归方法的应用。遍历的第一个节点总是当前子树的根节点,在中遍历中找到这个根节点可以划分出左子树和右子树,进而递归地处理这两个部分来重建整棵树[^1]。 #### 实现过程 对于给定的遍历`preorder`和中遍历`inorder`列: - 使用哈希表存储中遍历中的每个值及其对应的索引位置以便快速查找。 - 定义辅助函数用于递归建立左右子树,该函数接收四个参数:遍历起始点、遍历结束点、中遍历起始点以及中遍历结束点。 - 如果遍历起点超过终点,则返回空指针表示无更多节点可构造; - 否则取出当前子树的根节点(即遍历区间的首个元素),创建新的树节点; - 查找此根节点在中遍历的位置从而确定其左侧区间长度作为左子树大小,并据此调整后续递归调用时传递给下一层的边界条件; - 对于新创建的节点分别对其设置左右孩子为对应范围内的递归结果; - 返回新建好的节点对象供上级层连接成完整的树结构。 完成上述操作之后即可得到由输入列恢复出来的原始二叉树。最后再执行一次标准的后序遍历算法就能收集到所需的输出顺[^5]。 下面是具体的C++代码实现: ```cpp #include <unordered_map> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; // Helper function to recursively construct the tree from pre-order and in-order traversals. TreeNode* buildTreeHelper(const vector<int>& preorder, const vector<int>& inorder, unordered_map<int, int>& indexMap, int pStart, int pEnd, int iStart, int iEnd) { if (pStart > pEnd || iStart > iEnd) return nullptr; // No more nodes to process. // The first node of current subtree is always root. int rootValue = preorder[pStart]; auto rootNode = new TreeNode(rootValue); // Find where this value appears within the in-order traversal list using our map. int idxInOrder = indexMap[rootValue]; // Calculate how many elements are on the left side of 'root' inside in-order sequence. int numLeftSubtreeElements = idxInOrder - iStart; // Recursively create children subtrees based upon updated indices after splitting at found position. rootNode->left = buildTreeHelper(preorder, inorder, indexMap, pStart + 1, pStart + numLeftSubtreeElements, iStart, idxInOrder - 1); rootNode->right = buildTreeHelper(preorder, inorder, indexMap, pStart + numLeftSubtreeElements + 1, pEnd, idxInOrder + 1, iEnd); return rootNode; } vector<int> postorderTraversal(TreeNode* root) { stack<TreeNode*> s; vector<int> result; TreeNode* lastVisitedNode = NULL; while (!s.empty() || root != NULL) { if (root != NULL) { s.push(root); root = root->left; } else { TreeNode* peekNode = s.top(); if (peekNode->right && lastVisitedNode != peekNode->right) { root = peekNode->right; } else { result.push_back(peekNode->val); lastVisitedNode = s.top(); s.pop(); } } } return result; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值