多项式求逆

设已知A(x)B(x)=1(mod x^n),考虑A(x)C(x)=1(mod x^2n)

显然B(x)-C(x)=0(mod x^n)

平方得B(x)^2-2B(x)C(x)+C(x)^2=0(mod x^2n)

同乘A(x)得A(x)B(x)^2-2B(x)+C(x)=0(mod x^2n)

即有C(x)=2B(x)-A(x)B(x)^2,fft即可

设A(x)常数项为t,则A(x)*1/t=1(mod x^1)/

不断倍增即可解决

注意fft又是循环卷积,实现的时候必须做适当的清零

然后每个式子在不全相同的模意义下成立,清零的区间是哪段也要注意一下

代码:

#include<cstdio>
namespace poly{
	#define mo 998244353
	struct AwD{int x;};
	AwD operator+(AwD a,AwD b){return (AwD){(a.x+b.x)%mo};}
	AwD operator-(AwD a,AwD b){return (AwD){(a.x-b.x+mo)%mo};}
	AwD operator*(AwD a,AwD b){return (AwD){(int)(1LL*a.x*b.x%mo)};}
	AwD operator^(AwD a,int b){if(b<0) b+=mo-1;if(!b) return (AwD){1};AwD temp=a^(b>>1);temp=temp*temp;if(b&1) temp=temp*a;return temp;}
	AwD operator/(AwD a,AwD b){return a*(b^-1);}
	const AwD root=(AwD){3};
	const int om=mo-1;
	void ntt(AwD*a,int n,int d){
		int i,j,k;
		AwD w,t,u,v;
		for(i=(n>>1),j=1;j<n;j++){
			if(i<j) t=a[i],a[i]=a[j],a[j]=t;
			for(k=(n>>1);i&k;i^=k,k>>=1);i^=k;
		}
		for(k=2;k<=n;k<<=1){
			w=root^((mo-1)/k*d);
			for(i=0;i<n;i+=k){
				t=(AwD){1};
				for(j=i;j<i+(k>>1);j++){
					u=a[j];v=t*a[j+(k>>1)];
					a[j]=u+v;a[j+(k>>1)]=u-v;t=t*w;
				}
			}
		}
	}
	AwD a[1<<20],b[1<<20];
	void print(AwD*a,int l){
		for(int i=0;i<l;i++) printf("%d ",a[i].x);
		printf("\n");
	}
	void plus(AwD*_a,AwD*_b,int l,AwD*c){
		for(int i=0;i<l;i++) a[i]=_a[i],b[i]=_b[i];
		for(int i=0;i<l;i++) c[i]=a[i]+b[i];
	}
	void subt(AwD*_a,AwD*_b,int l,AwD*c){
		for(int i=0;i<l;i++) a[i]=_a[i],b[i]=_b[i];
		for(int i=0;i<l;i++) c[i]=a[i]-b[i];
	}
	void mult(AwD*_a,AwD b,int l,AwD*c){
		for(int i=0;i<l;i++) a[i]=_a[i];
		for(int i=0;i<l;i++) c[i]=a[i]*b;
	}
	void mult(AwD*_a,AwD*_b,int l,AwD*c){
		for(int i=0;i<l;i++) a[i]=_a[i],b[i]=_b[i];
		ntt(a,l,1);ntt(b,l,1);
		for(int i=0;i<l;i++) c[i]=a[i]*b[i];
		ntt(c,l,-1);
		for(int i=0;i<l;i++) c[i]=c[i]/(AwD){l};
	}
	AwD a1[1<<20],aa[1<<20],tmp[1<<20];
	void inv(AwD*_a,int l,AwD*b){	
		for(int i=0;i<l;i++) a1[i]=_a[i];
		for(int i=0;i<l;i++) b[i]=i?(AwD){0}:a1[i]^-1;
		for(int l0=2;l0<=l;l0<<=1){
			mult(b,(AwD){2},l0>>1,tmp);
			mult(b,b,l0,b);
			for(int i=0;i<(l0<<1);i++) aa[i]=i<l0?a1[i]:(AwD){0};
			mult(aa,b,l0<<1,b);
			for(int i=l0;i<(l0<<1);i++) b[i]=(AwD){0};
			subt(tmp,b,l0,b);
		}
	}
}
int n,l;
poly::AwD a[1<<20];
int main(){
	scanf("%d",&n);n++;
	for(int i=0;i<n;i++) scanf("%d",&a[i].x);
	l=1;while(l<n) l<<=1;for(int i=n;i<l;i++) a[i].x=0;
	poly::inv(a,l,a);
	for(int i=0;i<n;i++) printf("%d ",a[i].x);
}

在Java中,多项式通常是指找到一个多项式,使得它们的乘积等于恒等多项式1。这个过程可以视为多项式函数的运算,即解反函数。不过,需要注意的是,并非所有的多项式都有,只有那些非零常数项的多项式才有可能有。对于这样的多项式,我们可以利用除法的思想来近似计算。 一个简单的实现方法是使用拉格朗日插值法构建多项式,但是直接计算多项式在数值上可能会不稳定,因此更常见的是在数学软件库(如Apache Commons Math)中使用专门的算法,例如Bezout's identity(贝祖定理)或者使用多项式长除法。 以下是一个基本的示例,展示了如何使用`java.math.BigInteger`类(用于处理大整数)来实现多项式: ```java import java.math.BigInteger; public class PolynomialInversion { public static BigInteger[] inverse(BigInteger[] coefficients) { if (coefficients[0].equals(BigInteger.ZERO)) throw new IllegalArgumentException("Zero polynomial has no inverse."); // 倒序系数数组以便从最高次幂开始 BigInteger[] reversed = reverse(coefficients); // 计算系数的元 BigInteger[] inverses = new BigInteger[reversed.length]; for (int i = 0; i < reversed.length; i++) { inverses[i] = reversed[i].modInverse(reversed[reversed.length - 1]); } return reverse(inverses); // 将结果反转回原始顺序 } private static BigInteger[] reverse(BigInteger[] array) { BigInteger[] reversed = new BigInteger[array.length]; System.arraycopy(array, 0, reversed, reversed.length - 1, reversed.length); return reversed; } } ``` 在这个例子中,`inverse()`方法接收一个系数数组(按照降序排列),然后依次计算每个系数的模,最后返回向的系数数组。请注意,这只是一个简化的版本,实际应用中需要考虑更多的边界条件和精度问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值