自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 STA-GCN代码复现简述

之后在运行的时候可能会出现torch以及torchlight版本不一致导致的报错,可能还需要对这几个版本进行调整,下面给出笔者的环境版本以供参考。这个代码主要使用的数据集是NTU RGB+D 60和NTU RGB+D 120这两个共有数据集,可以到下面这个地址去下载数据集。代码中给出了环境配置的文件requirements.txt,我们可以运行下面这行命令来进行相关环境的安装。下面以NTU RGB+D 60 cross subject为例来展示训练和测试的命令。要整合不同模态的结果,运行下面的命令。

2025-04-09 08:56:36 851 2

原创 SaPR-GCN论文浅析

本工作提出基于解剖学先验的动态部位划分方法,将人体骨架拆解为头部、躯干、四肢等8个语义部位,通过可学习的部位内与跨部位关系建模(M1 和M2) 重构细粒度关节拓扑结构。该方法利用全局掩码和部位-关节映射动态增强关键连接(如手部与头部的交互权重),同时抑制冗余关联。

2025-03-21 09:19:51 1358

原创 MST-GCN论文浅析

传统图卷积是局部操作,在空间维度上主要利用短距离关节依赖,难以直接建模对区分动作至关重要的远距离关节关系。例如,不同动作需要不同身体部位的协调,像 “行走” 需全身协调保持平衡,“挥手” 仅需手部动作,识别这些动作需要捕获不同范围关节间的依赖关系,但现有方法在这方面存在欠缺。

2025-03-13 15:28:24 809

原创 MAN论文浅析

针对 SISR 任务中低分辨率(LR)图像对应无数潜在高分辨率(HR)图像导致难以寻找 LR 和 HR 像素正确相关性的病态问题,探索如何有效利用先验和图像内信息,提高模型重建的准确性,以更好地还原图像的高频信息。在提升模型性能的同时,避免因采用大规模数据集训练、复杂网络拓扑或深度扩展等方式带来的过高计算成本和训练负担。克服现有注意力机制无法同时获取局部信息和长距离依赖,且多在固定感受野下考虑注意力图的局限性。

2025-01-07 15:12:01 1701

原创 2S-AGCN论文浅析

2)GCN的结构是分层的且不同层包含多级语义信息,但是ST-GCN中的图拓扑结构是固定的,缺乏灵活性和对包含在所有层中的多级语义信息建模的能力。2)在时间维度上,两个相邻帧之间的对应关节用时间边连接(图 1 左侧的蓝线)。1)ST-GCN采用的骨骼图是启发式预定义的,且仅表示人体的物理结构,很难捕获诸如双手之间的依赖关系。1)在空间维度上,关节表示为顶点,它们在人体中的自然连接表示为空间边(图 1 左侧的橙色线条)。1)目前基于GCN的拓扑结构是手动设置的,且在所有层和输入样本上是固定的。

2024-11-09 17:21:26 1819 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除