多元函数的极值

多元函数的极值

定义

z=f(x,y) (x,y) D, M0(x0,y0)D(M0D),U(M0,δ())D M 0 ( x 0 , y 0 ) ∈ D ( M 0 是 D 的 内 点 ) , U ( M 0 , δ ( 域 ) ) ⊂ D

若f( x0,y0 x 0 , y 0 )是函数z=f(x,y)在 U(M0,δ) U ( M 0 , δ ) 中的最大值,则称f( x0,y0 x 0 , y 0 )为极大值

若f( x0,y0 x 0 , y 0 )是函数z=f(x,y)在 U(M0,δ) U ( M 0 , δ ) 中的最小值,则称f( x0,y0 x 0 , y 0 )为极小值

也就是区间的最大值和最小值

极值是局部概念,极值必须在定义域的内部取得,极值点必须是定义域的内点,定义域的便接到不可能是极值点。

极值的必要条件

一元极值必要条件

y=f(x),f( x0 x 0 )是极值,且f’( x0 x 0 )存在,则f’( x0 x 0 )=0

导数为0是函数取得极值的必要条件

驻点 x0 x 0

可导的极值点必为驻点,极值点不一定为驻点,驻点也不一定为极值点。

定理一(极值的必要条件)

设z=f(x,y)在点( x0,y0 x 0 , y 0 )处取得极值,且偏导数$f_x(x_0,y_0),f_y(x_0,y_0)存在,

fx(x0,y0)=0,fy(x0,y0)=0 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0

证明

设z=f(x,y)在点( x0,y0 x 0 , y 0 )处取得极大值

则一元函数z=f(x, y0 y 0 )=g(x),在点x= x0 x 0 处取得极大值

由于一元函数极值必要条件 fx(x0,y0)=g(x0)=0 f x ( x 0 , y 0 ) = g ( x 0 ) = 0

同理可得 fy(x0,y0)=0 f y ( x 0 , y 0 ) = 0

多元函数取得极值的必要条件是梯度为零向量

驻点

驻点就是梯度为零向量的点

非极值点的驻点称为鞍点

推论

有偏导数的极值点必为驻点

极值的充分条件

一元函数的充分条件

f’( x0 x 0 )=0

f”( x0 x 0 )>0 =>f( x0 x 0 )是极小值

f”( x0 x 0 )<0 =>f( x0 x 0 )是极大值

#### 定理二(二元函数极值的充分条件)

设函数z=f(x,y)在点( x0,y0 x 0 , y 0 )的某邻域内连续且有一阶及二阶连续偏导数,又 fx f x ( x0,y0 x 0 , y 0 )=0, fy f y ( x0,y0 x 0 , y 0 )=0,令

fxx f x x ( x0,y0 x 0 , y 0 )=A, fxy f x y ( x0,y0 x 0 , y 0 )=B, fyy f y y ( x0,y0 x 0 , y 0 )=C,

则f(x,y)在( x0,y0 x 0 , y 0 )处是否取得极值的条件如下

1.AC- B2 B 2 >0是具有极值,且当A<0时有极大值,当A>0时有极小值

2.AC- B2 B 2 <0时没有极值

3.AC- B2 B 2 =0时可能有,可能没有

例子

f(x,y)= x4+y44xy x 4 + y 4 − 4 x y 求极值

先求驻点

fx(x,y)=4x34y=0 f x ( x , y ) = 4 x 3 − 4 y = 0

fy(x,y)=4y34x=0 f y ( x , y ) = 4 y 3 − 4 x = 0

得驻点(0,0),(1,1),(-1,-1)

求二阶

A= fxx=12X2 f x x = 12 X 2

B= fxy=4 f x y = − 4

C= fyy=12y2 f y y = 12 y 2

AC- B2=144x2y216 B 2 = 144 x 2 y 2 − 16

(0,0):16<0无极值

(1,1):144-16>0,A=12>0 极小值

同理(-1,-1)极小值点

hesse矩阵

若H( x0,y0 x 0 , y 0 )是正定矩阵

fxx f x x ( x0,y0 x 0 , y 0 )>0 (A>0)

[fxx(x0,y0)fyx(x0,y0)fxy(x0,y0)fyy(x0,y0)]>0 [ f x x ( x 0 , y 0 ) f x y ( x 0 , y 0 ) f y x ( x 0 , y 0 ) f y y ( x 0 , y 0 ) ] > 0

AC- B2 B 2 >0

则f( x0,y0 x 0 , y 0 )是极小值

若H( x0,y0 x 0 , y 0 )是负定矩阵

fxx f x x ( x0,y0 x 0 , y 0 )<0 (A<0)

[fxy(x0,y0)fyx(x0,y0)fxy(x0,y0)fyy(x0,y0)]>0 [ f x y ( x 0 , y 0 ) f x y ( x 0 , y 0 ) f y x ( x 0 , y 0 ) f y y ( x 0 , y 0 ) ] > 0

AC- B2 B 2 >0

则f( x0,y0 x 0 , y 0 )是极大值

推广到n元

z= f(x1,x2,...,xn) f ( x 1 , x 2 , . . . , x n )

M0(x01,x02,...,x0n) M 0 ( x 1 0 , x 2 0 , . . . , x n 0 )

f(M0)=0 ∇ f ( M 0 ) = 0

fx1x1fx2x1...fxnx1fx1y2fx2x2...fxnx2............fx1xnfx2xn...fxnxn>0 [ f x 1 x 1 f x 1 y 2 . . . f x 1 x n f x 2 x 1 f x 2 x 2 . . . f x 2 x n . . . . . . . . . . . . f x n x 1 f x n x 2 . . . f x n x n ] > 0

若H( M0 M 0 )是正定矩阵,则f( M0 M 0 )是极小值

若H( M0 M 0 )是负定矩阵,则f( M0 M 0 )是极大值。

多元函数最值

定义

函数f(x,y)在以区域D上的最大(最小)的函数值称为函数在该区域上的最大(最小)值,简称最值。

最值是个整体概念

极值是个局部概念。

函数f(x,y)在一区域D上的最值可以在区域内部渠道(也是极值)。也可以在区别边界取到。

求法

1.求出定义域内部可能的极值点

2.求出定义域的边界上可能的最值点

3.比较上述各点处函数值的大小,得到最大最小值。

由于多元函数的定义域边界有无穷多个点,由此,求多元函数的最值比较复杂。如果根据问题知道,最值出现在定义域内部,则可避免边界点的讨论。

例子

要做一个容积为V的无盖长方形水箱。问水箱的长宽高各取多大,才能使用料最省?

面积公式:S=xy+2(xz+yz)

由xyz=V得z= Vxy V x y

带入面积公式

S= xy+2(Vy+Vx)(x<x,y,+) x y + 2 ( V y + V x ) ( x < x , y , + ∞ )

定义域是开区域,最值在区域内取到

11.求驻点

Sx=y2Vx2=0 ∂ S ∂ x = y − 2 V x 2 = 0

Sy=2Vy2=0 ∂ S ∂ y = − 2 V y 2 = 0

驻点( 2V3,2V3 2 V 3 , 2 V 3 )

A= Sxx=4Vx3=2 S x x = 4 V x 3 = 2

B=Sxy=1 B = S x y = 1

C=Syy=4Vy3=2 C = S y y = 4 V y 3 = 2

B2AC=14 B 2 − A C = 1 − 4 <0

A=2>0

S取得极小值

x=2V3,y=2V3,z=vxy=2V32 x = 2 V 3 , y = 2 V 3 , z = v x y = 2 V 3 2 时,最省。

条件极值及拉格朗日乘数法

条件极值

如果对自变量作一定的限制,则相应的极值问题就是条件极值问题。

上面的水箱例子是将条件极值转化为无条件极值。可以通过拉格朗日乘数法求。

条件极值必要条件

函数

z=f(x,y)

在条件

φ(x,y)=0 φ ( x , y ) = 0

下取得极值的必要条件

推导:

z0=f(x0,y0) z 0 = f ( x 0 , y 0 ) 是z=f(x,y)在条件 φ(x,y) φ ( x , y ) =0下的极值

φ(x,y) φ ( x , y ) =0 确定了一元隐函数y=y(x)

z=f(x,y(x))

在点x= x0 x 0 处取得极值

利用一元函数极值的必要条件求导,并令导数为0

z=f(x,y(x))

dzdx=fx1+fydydx=0 d z d x = f x ∗ 1 + f y ∗ d y d x = 0

fx(x0,y0)+fy(x0,y0)y(x0)=0 f x ( x 0 , y 0 ) + f y ( x 0 , y 0 ) ∗ y ′ ( x 0 ) = 0

y(x0)=fx(x0,y0)fy(x0,y0) y ′ ( x 0 ) = − f x ( x 0 , y 0 ) f y ( x 0 , y 0 )

隐函数y=y(x)求导

y(x0)=φx(x0,y0)φy(x0,y0) y ′ ( x 0 ) = − φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 )

fx(x0,y0)fy(x0,y0)=φx(x0,y0)φy(x0,y0) f x ( x 0 , y 0 ) f y ( x 0 , y 0 ) = φ x ( x 0 , y 0 ) φ y ( x 0 , y 0 )

fx(x0,y0)φx(x0,y0)=fy(x0,y0)φy(x0,y0) f x ( x 0 , y 0 ) φ x ( x 0 , y 0 ) = f y ( x 0 , y 0 ) φ y ( x 0 , y 0 )

即向量{ fx(x0,y0),fy(x0,y0) f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) }和向量{ φx(x0,y0),φy(x0,y0) φ x ( x 0 , y 0 ) , φ y ( x 0 , y 0 ) }平行

可以写成

f(x0,y0)//φ(x0,y0) ∇ f ( x 0 , y 0 ) / / ∇ φ ( x 0 , y 0 )

等价于 λ0 ∃ λ 0 使

f(x0,y0)=λ0φ(x0,y0) ∇ f ( x 0 , y 0 ) = − λ 0 ∇ φ ( x 0 , y 0 )

f(x0,y0)+λ0φ(x0,y0)=0 ∇ f ( x 0 , y 0 ) + λ 0 ∇ φ ( x 0 , y 0 ) = 0

梯度运算法则:

(f,λφ)=0 ∇ ( f , λ φ ) = 0

f(x,y,λ)=f(x,y)+λφ(x,y) f ( x , y , λ ) = f ( x , y ) + λ φ ( x , y )

f(x0,y0,λ)=0 ∇ f ( x 0 , y 0 , λ ) = 0

(x0,y0,λ) ( x 0 , y 0 , λ ) f(x,y,λ) f ( x , y , λ ) 驻点

所以必要条件为:

λ0 ∃ λ 0 使 (x0,y0,λ0) ( x 0 , y 0 , λ 0 ) 为拉格朗日函数 (x,y,λ) ( x , y , λ ) 的驻点

拉格朗日乘子法

求法

求函数z=f(x,y)在条件 φ(x,y)=0 φ ( x , y ) = 0 下的极值

1.作拉格朗日函数

f(x,y,λ)=f(x,y)+λφ(x,y) f ( x , y , λ ) = f ( x , y ) + λ φ ( x , y )

2.求 f(x,y,λ)=f(x,y)+λφ(x,y) f ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) 的驻点

根据多元函数极值的必要条件

Fx=fx(x,y)+λφx(x,y)=0 F x = f x ( x , y ) + λ φ x ( x , y ) = 0

Fy=fy(x,y)+λφy(x,y)=0 F y = f y ( x , y ) + λ φ y ( x , y ) = 0

Fλ=φ(x,y)=0 F λ = φ ( x , y ) = 0 约束条件

解以上方程组,得驻点 (x0,y0,λ) ( x 0 , y 0 , λ )

3. (x0,y0) ( x 0 , y 0 ) 便是可能的条件极值点,可根据实际问题判断f (x0,y0) ( x 0 , y 0 ) 为条件极值。

思路

利用拉格朗日乘数,将目标函数(二元函数)与约束条件结合起来构造拉格朗日函数(三元函数)

从而将二元函数的条件极值转成三元函数的无条件极值。

例子

要做一个容积为V的无盖长方形水箱。问水箱的长宽高各取多大,才能使用料最省?

求函数S=xy+2(xz+yz)

在约束条件

xyz=V下的最小值

作拉格朗日函数

F=xy+2(xz+yz)+λ(xyz-V)

求F的驻点

Fx F x =y+2z+λyz=0

Fy F y =x+2z+λxz=0

Fz F z =2x+2y+λxy=0

Fλ F λ =xyz-V=0

x=y

z=1/2x

λx=-4

x=y= 2V3 2 V 3

z= 122V3 1 2 2 V 3

多个约束条件

函数u=f(x,y,z)

在两个约束条件

G(x,y,z)=0

H(x,y,z)=0

的极小值

作拉格朗日函数

F(x,y,z,λ,μ)=f(x,y,z)+λG(x,y,z)+μH(x,y,z)

求F的驻点就可以得到

minx min x f(x)

s.t. hi(x)=0 h i ( x ) = 0 i=1,2,…,m

构建拉格朗日函数

L(x,λ)=f(x)+i=1mλihi(x) L ( x , λ ) = f ( x ) + ∑ i = 1 m λ i h i ( x )

1. 使用Python 绘制二元函数的图像: 首先需要安装matplotlib库,然后使用以下代码进行绘图: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) # 定义二元函数 Z = X**2 + Y**2 # 绘制图像 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() ``` 2. 多元函数的偏导数: 偏导数表示函数在某个变量上的变化率,而其他变量保持不变。对于多元函数,可以对每个变量分别偏导数。 例如,对于函数 $f(x,y)=x^2+y^2$,可以出它在 $x$ 和 $y$ 上的偏导数: $\frac{\partial f}{\partial x} = 2x$ $\frac{\partial f}{\partial y} = 2y$ 3. 多元函数的高阶偏导数: 高阶偏导数表示函数在某个变量上的变化率的变化率,可以通过对偏导数再次导得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以出它的二阶偏导数: $\frac{\partial^2 f}{\partial x^2} = 2$ $\frac{\partial^2 f}{\partial y^2} = 2$ $\frac{\partial^2 f}{\partial x\partial y} = 0$ 4. 多元函数的全微分: 全微分表示函数在某个点上的变化量,可以通过对每个变量的偏导数和得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以出它在点 $(1,2)$ 处的全微分: $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ $= 2x dx + 2y dy$ $= 2(1) dx + 2(2) dy$ $= 2dx + 4dy$ 5. 函数的偏导数: 隐函数是一个多元函数,其中一个变量可以表示为其他变量的函数,例如 $x^2+y^2=1$ 可以表示为 $y=\sqrt{1-x^2}$。 对于这样的隐函数,可以使用隐函数导法出它的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$ 其中 $f(x,y)=x^2+y^2-1$,代入得: $\frac{\partial y}{\partial x} = -\frac{2x}{2y} = -\frac{x}{y}$ 6. 函数组的偏导数: 类似地,对于多个隐函数组成的隐函数组,可以使用偏导数的链式法则出它们的偏导数。 例如,对于隐函数组 $\begin{cases}f(x,y,z) = x^2+y^2+z^2-1=0 \\ g(x,y,z) = x+y+z-2=0\end{cases}$,可以出它们在点 $(1,1,0)$ 处的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{2x}{2y} = -\frac{x}{y}$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial y}} = -\frac{2z}{2y} = -\frac{z}{y}$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial x}} = -\frac{2z}{2x} = -\frac{z}{x}$ $\frac{\partial y}{\partial x} = -\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial x}} = -1$ 7. 方向导数与梯度: 方向导数表示函数在某个方向上的变化率,可以通过对梯度向量与该方向向量进行点积得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处沿着向量 $(1,1)$ 的方向导数为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $D_{\vec{v}}f = \nabla f \cdot \vec{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 6$ 梯度表示函数在某个点上的最大变化率,可以通过对每个变量的偏导数构成的向量得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处的梯度为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ 8. 多元函数极值极值表示函数在某个点上取得最大或最小值,可以通过解偏导数为0的方程组来得到。 例如,对于函数 $f(x,y)=x^2+y^2+2x+4y+1$,可以出它的偏导数: $\frac{\partial f}{\partial x} = 2x+2$ $\frac{\partial f}{\partial y} = 2y+4$ 令偏导数为0,得到临界点 $(x,y)=(-1,-2)$。 然后可以通过解二阶偏导数的行列式来确定这个点的极值类型: $D = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x\partial y} \\ \frac{\partial^2 f}{\partial y\partial x} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$ 因为 $D>0$ 且 $\frac{\partial^2 f}{\partial x^2}>0$,所以这个点是函数的最小值点。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值