- 博客(7)
- 收藏
- 关注
原创 机器学习实验课7:用SVM实现垃圾邮件过滤
使用SVM实现垃圾邮件过滤器主要包括以下步骤:数据预处理、加载数据并训练模型、评估模型计算准确率、使用模型对新邮件进行分类。本文详细介绍了支持向量机(SVM)的提出、核心原理以及使用SVM实现垃圾邮件过滤器的详细步骤,并结合实验进行了深入解读。SVM作为一种经典的分类算法,在处理文本分类问题时具有重要的应用价值。它通过寻找最大间隔超平面,能够有效地提高模型的泛化能力。同时,核技巧的使用使得SVM能够处理非线性可分问题,进一步扩展了其应用范围。
2025-06-02 05:26:30
667
原创 机器学习实验课6:Logistics回归模型
逻辑回归算法的设计包括数据加载与预处理、特征工程、模型训练、预测、评估与可视化等步骤。本文详细介绍了逻辑回归的提出、损失函数的设计哲学、算法设计步骤,并结合实验进行了深入解读。逻辑回归作为一种经典的分类算法,在处理二分类问题时具有重要的应用价值。然而,它也存在一些局限性,例如对特征的线性假设和对异常值的敏感性。在未来的研究中,我们可以探索更复杂的模型,如神经网络和支持向量机,以提高分类效果。同时,也可以结合特征选择和降维技术,进一步优化模型性能。希望本文能够帮助读者更好地理解和应用逻辑回归算法。
2025-05-10 19:18:38
1076
原创 机器学习实验课5:用朴素贝叶斯分类器对西瓜分类
贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件下,事件发生的概率。其公式如下:其中:P(A∣B) 是在事件 B 发生的条件下事件 A 发生的概率,称为后验概率。P(B∣A) 是在事件 A 发生的条件下事件 B 发生的概率,称为似然概率。P(A) 和 P(B) 分别是事件 A 和事件 B 的先验概率。朴素贝叶斯分类器假设各个特征之间相互独立,从而简化了条件概率的计算。本次实验我们使用朴素贝叶斯分类器对西瓜数据集进行了分类。
2025-04-24 14:30:00
940
原创 机器学习实验课4:决策树
决策树是一种直观易懂的机器学习算法,适合解释性要求高的场景。ID3:使用信息增益,构建多叉树。C4.5:使用信息增益率,避免选择取值较多的特征。CART:使用基尼指数,构建二叉树,适用于分类和回归问题。希望这篇文章能帮助你更好地理解和应用决策树算法!如果有任何问题,欢迎随时交流。
2025-04-21 03:07:15
1091
原创 机器学习实验课3:模型评估
模型评估是指对训练完成的机器学习模型进行性能衡量的过程。它能够帮助我们了解模型在未见数据上的表现,从而选择出最适合任务需求的模型。通过模型评估,我们可以发现模型的优点和不足,进而对模型进行优化和调整,以提高其泛化能力。模型评估是机器学习中不可或缺的环节,通过合理选择评估指标和工具,我们可以全面了解模型的性能,从而优化模型并提高其泛化能力。在实际应用中,我们需要根据具体问题的特点和需求,灵活选择合适的评估指标和曲线,以更好地评估和优化模型。
2025-04-07 22:17:09
631
原创 机器学习实验课2:基于K近邻算法的分类器的实现
这次实验设计一个基于 K 近邻算法(KNN)的分类器,用于根据用户的三个特征(每年获得的飞行常客里程数、玩视频游戏所耗时间百分比、每周消费的冰淇淋公升数)预测用户对约会对象的喜好程度(不喜欢、一般喜欢、非常喜欢)。
2025-03-24 11:03:12
931
原创 机器学习实验课1:环境配置
依次选择Next->I agree-> All Users->Next->全部勾选->Install。5.下载源修改(复制下面的指令粘贴到anaconda prompt即可)2.清华大学开源镜像网站下载:(国内网站下载速度相对更快)输入conda --version出现对应版号则安装成功。3.点击新建,复制刚刚安装的anaconda的地址粘贴。下载对应的电脑型号版本的anaconda的安装包。2.选择环境变量,找到系统变量的Path双击进入。# 设置搜索时显示通道地址。# 添加阿里云镜像源。
2025-03-10 23:32:52
691
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人