Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural NetworkYing Li,, Haokui Zhang,and Qiang Shen 点击下载论文SpectralSpa...

2017-07-02 13:05:08

阅读数 1149

评论数 0

如何保存Keras模型?

如何保存Keras模型?我们不推荐使用pickle或cPickle来保存Keras模型你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:-模型的结构,以便重构该模型 -模型的权重 -训练配置(损失函数,优化器等) -优化器的...

2017-05-08 11:07:36

阅读数 806

评论数 0

Semi-Supervised Learning with Generative Adversarial Networks

通过使判别器网络输出类别标签将GAN扩展成半监督的。在一个N类别的数据集上训练生成模型G和判别模型D。训练时,D预测输入数据属于N个类别中的哪一个,加入一个额外的类别对应G的输出。我们证明,相对与普通的GAN,此方法可以用来生成一个更有效的分类器并可以生成高质量的样本。

2017-04-13 21:45:19

阅读数 3283

评论数 1

CONDITIONAL IMAGE SYNTHESIS WITH AUXILIARY CLASSIFIER GANS

论文下载地址:这里[目录] 摘要 简介 背景知识 AC-GANs 结果 生成高分辨率图像改善可分性 测量生成图像的多样性摘要合成高分辨率图像是机器学习中一个长期存在的挑战,文中介绍了图像合成的一个改进训练GAN s的新方法。我们运用标签条件构建了一个变种GANs,产生显示出全局一致性的128×12...

2017-04-13 21:27:16

阅读数 2126

评论数 0

阅读源码遇到的一些Python 函数(--小白笔记)

npexpand_dims defaultdictnp.expand_dims扩展维度,例:>>> import numpy >>> a=numpy.arange(10) >>>> a array([0, 1, 2, 3, 4, 5, 6...

2017-03-29 20:28:50

阅读数 347

评论数 0

阅读源码遇到的一些TF、keras函数及问题2(--小白笔记)

numpyhstackab与numpyvstackab numpytileab keraslayerscoreDense keraslayersconvolutionalConvolution2D keraslayersconvolutionalDeconvolution2D keraslayer...

2017-03-21 16:56:47

阅读数 5243

评论数 1

理解AC_GAN源码中遇到的一些函数(–小白笔记)

理解AC_GAN源码中遇到的一些函数(–小白笔记)代码地址:链接 作者对应的叙述文章[目录]理解AC_GAN源码中遇到的一些函数小白笔记tfconstant tfrandom_normal tftruncated_normal tfrandom_uniform tfconcat tfcast...

2017-03-16 11:11:48

阅读数 3468

评论数 0

挖坑:UNSUPERVISED AND SEMI-SUPERVISED LEARNING WITH CATEGORICAL GENERATIVE ADVERSARIAL NETWORKS

Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

2017-02-18 16:04:32

阅读数 2539

评论数 0

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

2017-02-15 10:30:05

阅读数 5276

评论数 0

提示
确定要删除当前文章?
取消 删除