HashMap的原理1.7 和1.8 的区别

一、初窥HashMap

HashMap是应用更广泛的哈希表实现,而且大部分情况下,都能在常数时间性能的情况下进行put和get操作。要掌握HashMap,主要从如下几点来把握:

  • jdk1.7中底层是由数组(也有叫做“位桶”的)+链表实现;jdk1.8中底层是由数组+链表/红黑树实现
  • 以存储null键和null值,线程不安全
  • 初始size为16,扩容:newsize = oldsize*2,size一定为2的n次幂
  • 扩容针对整个Map,每次扩容时,原来数组中的元素依次重新计算存放位置,并重新插入
  • 插入元素后才判断该不该扩容,有可能无效扩容(插入后如果扩容,如果没有再次插入,就会产生无效扩容)
  • 当Map中元素总数超过Entry数组的75%,触发扩容操作,为了减少链表长度,元素分配更均匀

为什么说HashMap是线程不安全的?在接近临界点时,若此时两个或者多个线程进行put操作,都会进行resize(扩容)和reHash(为key重新计算所在位置),而reHash在并发的情况下可能会形成链表环。

二、jdk1.7中HashMap的实现

 HashMap底层维护的是数组+链表,我们可以通过一小段源码来看看:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

/**

 * The default initial capacity - MUST be a power of two.

 */

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4// aka 16

 

/**

 * The maximum capacity, used if a higher value is implicitly specified

 * by either of the constructors with arguments.

 * MUST be a power of two <= 1<<30.

 */

static final int MAXIMUM_CAPACITY = 1 << 30;

 

/**

 * The load factor used when none specified in constructor.

 */

static final float DEFAULT_LOAD_FACTOR = 0.75f;

 

/**

 * An empty table instance to share when the table is not inflated.

 */

static final Entry<?,?>[] EMPTY_TABLE = {};

 

/**

 * The table, resized as necessary. Length MUST Always be a power of two.

 */

transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

  通过以上代码可以看出初始容量(16)、负载因子以及对数组的说明。数组中的每一个元素其实就是Entry<K,V>[] table,Map中的key和value就是以Entry的形式存储的。关于Entry<K,V>的具体定义参看如下源码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

static class Entry<K,V> implements Map.Entry<K,V> {

    final K key;

    V value;

    Entry<K,V> next;

    int hash;

 

    Entry(int h, K k, V v, Entry<K,V> n) {

        value = v;

        next = n;

        key = k;

        hash = h;

    }

 

    public final K getKey() {

        return key;

    }

 

    public final V getValue() {

        return value;

    }

 

    public final V setValue(V newValue) {

        V oldValue = value;

        value = newValue;

        return oldValue;

    }

 

    public final boolean equals(Object o) {

        if (!(o instanceof Map.Entry))

            return false;

        Map.Entry e = (Map.Entry)o;

        Object k1 = getKey();

        Object k2 = e.getKey();

        if (k1 == k2 || (k1 != null && k1.equals(k2))) {

            Object v1 = getValue();

            Object v2 = e.getValue();

            if (v1 == v2 || (v1 != null && v1.equals(v2)))

                return true;

        }

        return false;

    }

 

    public final int hashCode() {

        return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());

    }

 

    public final String toString() {

        return getKey() + "=" + getValue();

    }

 

    /**

     * This method is invoked whenever the value in an entry is

     * overwritten by an invocation of put(k,v) for a key k that's already

     * in the HashMap.

     */

    void recordAccess(HashMap<K,V> m) {

    }

 

    /**

     * This method is invoked whenever the entry is

     * removed from the table.

     */

    void recordRemoval(HashMap<K,V> m) {

    }

}

当向 HashMap 中 put 一对键值时,它会根据 key的 hashCode 值计算出一个位置, 该位置就是此对象准备往数组中存放的位置。 该计算过程参看如下代码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

transient int hashSeed = 0;

final int hash(Object k) {

     int h = hashSeed;

     if (0 != h && k instanceof String) {

         return sun.misc.Hashing.stringHash32((String) k);

     }

 

     h ^= k.hashCode();

 

     // This function ensures that hashCodes that differ only by

     // constant multiples at each bit position have a bounded

     // number of collisions (approximately 8 at default load factor).

     h ^= (h >>> 20) ^ (h >>> 12);

     return h ^ (h >>> 7) ^ (h >>> 4);

 }

 

 /**

  * Returns index for hash code h.

  */

 static int indexFor(int h, int length) {

     // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";

     return h & (length-1);

 }

通过hash计算出来的值将会使用indexFor方法找到它应该所在的table下标。当两个key通过hashCode计算相同时,则发生了hash冲突(碰撞),HashMap解决hash冲突的方式是用链表。当发生hash冲突时,则将存放在数组中的Entry设置为新值的next(这里要注意的是,比如A和B都hash后都映射到下标i中,之前已经有A了,当map.put(B)时,将B放到下标i中,A则为B的next,所以新值存放在数组中,旧值在新值的链表上)。即将新值作为此链表的头节点,为什么要这样操作?据说后插入的Entry被查找的可能性更大(因为get查询的时候会遍历整个链表),此处有待考究,如果有哪位大神知道,请留言告知。

如果该位置没有对象存在,就将此对象直接放进数组当中;如果该位置已经有对象存在了,则顺着此存在的对象的链开始寻找(为了判断是否是否值相同,map不允许<key,value>键值对重复), 如果此链上有对象的话,再去使用 equals方法进行比较,如果对此链上的每个对象的 equals 方法比较都为 false,则将该对象放到数组当中,然后将数组中该位置以前存在的那个对象链接到此对象的后面。 

 

图中,左边部分即代表哈希表,也称为哈希数组(默认数组大小是16,每对key-value键值对其实是存在map的内部类entry里的),数组的每个元素都是一个单链表的头节点,跟着的蓝色链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。

前面说过HashMap的key是允许为null的,当出现这种情况时,会放到table[0]中。

1

2

3

4

5

6

7

8

9

10

11

12

13

private V putForNullKey(V value) {

    for (Entry<K,V> e = table[0]; e != null; e = e.next) {

        if (e.key == null) {

            V oldValue = e.value;

            e.value = value;

            e.recordAccess(this);

            return oldValue;

        }

    }

    modCount++;

    addEntry(0null, value, 0);

    return null;

}

当size>=threshold( threshold等于“容量*负载因子”)时,会发生扩容。

1

2

3

4

5

6

7

8

9

void addEntry(int hash, K key, V value, int bucketIndex) {

    if ((size >= threshold) && (null != table[bucketIndex])) {

        resize(2 * table.length);

        hash = (null != key) ? hash(key) : 0;

        bucketIndex = indexFor(hash, table.length);

    }

 

    createEntry(hash, key, value, bucketIndex);

}

jdk1.7中resize,只有当 size>=threshold并且 table中的那个槽中已经有Entry时,才会发生resize。即有可能虽然size>=threshold,但是必须等到每个槽都至少有一个Entry时,才会扩容,可以通过上面的代码看到每次resize都会扩大一倍容量(2 * table.length)。

三、jdk1.8中HashMap的实现

在jdk1.8中HashMap的内部结构可以看作是数组(Node<K,V>[] table)和链表的复合结构,数组被分为一个个桶(bucket),通过哈希值决定了键值对在这个数组中的寻址(哈希值相同的键值对,则以链表形式存储。有一点需要注意,如果链表大小超过阈值(TREEIFY_THRESHOLD,8),图中的链表就会被改造为树形(红黑树)结构

1

transient Node<K,V>[] table;

Entry的名字变成了Node,原因是和红黑树的实现TreeNode相关联。

在分析jdk1.7中HashMap的hash冲突时,不知大家是否有个疑问就是万一发生碰撞的节点非常多怎么版?如果说成百上千个节点在hash时发生碰撞,存储一个链表中,那么如果要查找其中一个节点,那就不可避免的花费O(N)的查找时间,这将是多么大的性能损失。这个问题终于在JDK1.8中得到了解决,在最坏的情况下,链表查找的时间复杂度为O(n),而红黑树一直是O(logn),这样会提高HashMap的效率。

jdk1.7中HashMap采用的是位桶+链表的方式,即我们常说的散列链表的方式,而jdk1.8中采用的是位桶+链表/红黑树的方式,也是非线程安全的。当某个位桶的链表的长度达到某个阀值的时候,这个链表就将转换成红黑树。

jdk1.8中,当同一个hash值的节点数不小于8时,将不再以单链表的形式存储了,会被调整成一颗红黑树(上图中null节点没画)。这就是jdk1.7与jdk1.8中HashMap实现的最大区别。

通过分析put方法的源码,可以让这种区别更直观:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

static final int TREEIFY_THRESHOLD = 8;

 

public V put(K key, V value) {

        return putVal(hash(key), key, value, falsetrue);

 }

  

  

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,

                   boolean evict) {

        Node<K,V>[] tab;

    Node<K,V> p;

    int n, i;

    //如果当前map中无数据,执行resize方法。并且返回n

        if ((tab = table) == null || (n = tab.length) == 0)

            n = (tab = resize()).length;

     //如果要插入的键值对要存放的这个位置刚好没有元素,那么把他封装成Node对象,放在这个位置上即可

        if ((p = tab[i = (n - 1) & hash]) == null)

            tab[i] = newNode(hash, key, value, null);

    //否则的话,说明这上面有元素

        else {

            Node<K,V> e; K k;

        //如果这个元素的key与要插入的一样,那么就替换一下。

            if (p.hash == hash &&

                ((k = p.key) == key || (key != null && key.equals(k))))

                e = p;

        //1.如果当前节点是TreeNode类型的数据,执行putTreeVal方法

            else if (p instanceof TreeNode)

                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);

            else {

        //还是遍历这条链子上的数据,跟jdk7没什么区别

                for (int binCount = 0; ; ++binCount) {

                    if ((e = p.next) == null) {

                        p.next = newNode(hash, key, value, null);

            //2.完成了操作后多做了一件事情,判断,并且可能执行treeifyBin方法

                        if (binCount >= TREEIFY_THRESHOLD - 1// -1 for 1st

                            treeifyBin(tab, hash);

                        break;

                    }

                    if (e.hash == hash &&

                        ((k = e.key) == key || (key != null && key.equals(k))))

                        break;

                    p = e;

                }

            }

            if (e != null) { // existing mapping for key

                V oldValue = e.value;

                if (!onlyIfAbsent || oldValue == null//true || --

                    e.value = value;

           //3.

                afterNodeAccess(e);

                return oldValue;

            }

        }

        ++modCount;

    //判断阈值,决定是否扩容

        if (++size > threshold)

            resize();

        //4.

        afterNodeInsertion(evict);

        return null;

    }

以上代码中的特别之处如下:

1

2

if (binCount >= TREEIFY_THRESHOLD - 1// -1 for 1st

       treeifyBin(tab, hash);

treeifyBin()就是将链表转换成红黑树。

putVal方法处理的逻辑比较多,包括初始化、扩容、树化,近乎在这个方法中都能体现,针对源码简单讲解下几个关键点:

  • 如果Node<K,V>[] table是null,resize方法会负责初始化,即如下代码:

1

2

if ((tab = table) == null || (n = tab.length) == 0)

    n = (tab = resize()).length;

  • resize方法兼顾两个职责,创建初始存储表格,或者在容量不满足需求的时候,进行扩容(resize)。
  • 在放置新的键值对的过程中,如果发生下面条件,就会发生扩容。

1

2

if (++size > threshold)

    resize();

  • 具体键值对在哈希表中的位置(数组index)取决于下面的位运算:

1

i = (n - 1) & hash

仔细观察哈希值的源头,会发现它并不是key本身的hashCode,而是来自于HashMap内部的另一个hash方法。为什么这里需要将高位数据移位到低位进行异或运算呢?这是因为有些数据计算出的哈希值差异主要在高位,而HashMap里的哈希寻址是忽略容量以上的高位的,那么这种处理就可以有效避免类似情况下的哈希碰撞。

在jdk1.8中取消了indefFor()方法,直接用(tab.length-1)&hash,所以看到这个,代表的就是数组的下角标。

1

2

3

4

static final int hash(Object key) {

    int h;

    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

}

为什么HashMap为什么要树化?

之前在极客时间的专栏里看到过一个解释。本质上这是个安全问题。因为在元素放置过程中,如果一个对象哈希冲突,都被放置到同一个桶里,则会形成一个链表,我们知道链表查询是线性的,会严重影响存取的性能。而在现实世界,构造哈希冲突的数据并不是非常复杂的事情,恶意代码就可以利用这些数据大量与服务器端交互,导致服务器端CPU大量占用,这就构成了哈希碰撞拒绝服务攻击,国内一线互联网公司就发生过类似攻击事件。

四、分析Hashtable、HashMap、TreeMap的区别

  • HashMap是继承自AbstractMap类,而HashTable是继承自Dictionary类。不过它们都实现了同时实现了map、Cloneable(可复制)、Serializable(可序列化)这三个接口。存储的内容是基于key-value的键值对映射,不能由重复的key,而且一个key只能映射一个value。
  • Hashtable的key、value都不能为null;HashMap的key、value可以为null,不过只能有一个key为null,但可以有多个null的value;TreeMap键、值都不能为null。
  • Hashtable、HashMap具有无序特性。TreeMap是利用红黑树实现的(树中的每个节点的值都会大于或等于它的左子树中的所有节点的值,并且小于或等于它的右子树中的所有节点的值),实现了SortMap接口,能够对保存的记录根据键进行排序。所以一般需求排序的情况下首选TreeMap,默认按键的升序排序(深度优先搜索),也可以自定义实现Comparator接口实现排序方式。

一般情况下我们选用HashMap,因为HashMap的键值对在取出时是随机的,其依据键的hashCode和键的equals方法存取数据,具有很快的访问速度,所以在Map中插入、删除及索引元素时其是效率最高的实现。而TreeMap的键值对在取出时是排过序的,所以效率会低点。

TreeMap是基于红黑树的一种提供顺序访问的Map,与HashMap不同的是它的get、put、remove之类操作都是o(log(n))的时间复杂度,具体顺序可以由指定的Comparator来决定,或者根据键的自然顺序来判断。

对HashMap做下总结:

HashMap基于哈希散列表实现 ,可以实现对数据的读写。将键值对传递给put方法时,它调用键对象的hashCode()方法来计算hashCode,然后找到相应的bucket位置(即数组)来储存值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用链表来解决hash冲突问题,当发生冲突了,对象将会储存在链表的头节点中。HashMap在每个链表节点中储存键值对对象,当两个不同的键对象的hashCode相同时,它们会储存在同一个bucket位置的链表中,如果链表大小超过阈值(TREEIFY_THRESHOLD,8),链表就会被改造为树形结构。

 

 

不同点:
(1)JDK1.7用的是头插法,而JDK1.8及之后使用的都是尾插法,那么他们为什么要这样做呢?因为JDK1.7是用单链表进行的纵向延伸,当采用头插法就是能够提高插入的效率,但是也会容易出现逆序且环形链表死循环问题。但是在JDK1.8之后是因为加入了红黑树使用尾插法,能够避免出现逆序且链表死循环的问题。

(2)扩容后数据存储位置的计算方式也不一样:1. 在JDK1.7的时候是直接用hash值和需要扩容的二进制数进行&(这里就是为什么扩容的时候为啥一定必须是2的多少次幂的原因所在,因为如果只有2的n次幂的情况时最后一位二进制数才一定是1,这样能最大程度减少hash碰撞)(hash值 & length-1) 
2、而在JDK1.8的时候直接用了JDK1.7的时候计算的规律,也就是扩容前的原始位置+扩容的大小值=JDK1.8的计算方式,而不再是JDK1.7的那种异或的方法。但是这种方式就相当于只需要判断Hash值的新增参与运算的位是0还是1就直接迅速计算出了扩容后的储存方式。 
 
在计算hash值的时候,JDK1.7用了9次扰动处理=4次位运算+5次异或,而JDK1.8只用了2次扰动处理=1次位运算+1次异或。

扩容流程对比图: 

(3)JDK1.7的时候使用的是数组+ 单链表的数据结构。但是在JDK1.8及之后时,使用的是数组+链表+红黑树的数据结构(当链表的深度达到8的时候,也就是默认阈值,就会自动扩容把链表转成红黑树的数据结构来把时间复杂度从O(n)变成O(nlogN)提高了效率)

(二)哈希表如何解决Hash冲突?


(三)为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化


(四)为什么 HashMap 中 String、Integer 这样的包装类适合作为 key 键


(五)HashMap 中的 key若 Object类型, 则需实现哪些方法?

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值