最大连续子序列和

题目

给定K个整数的序列{ A1, A2, …, Ak },其任意连续子序列可表示为{ Ai, Ai+1, …, Aj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个。

例如给定序列{ -2, 11, -4, 13, -5, -2 },
其最大连续子序列为{ 11, -4, 13 },最大和为20。

动态规划:

#include<cstdio>
#include<algorithm>
using namespace std;
#define N 10010

int A[N], dp[N];//A[i]存放序列,dp[i]存放一A[i]结尾的连续序列的最大和
int main(){
	
	int n;
	scanf("%d",&n);
	for(int i = 0; i < n; i++){//读入序列 
		scanf("%d", &A[i]);
	}
	//边界
	dp[0] = A[0];
	
	for(int i = 1; i < n; i++){
		//状态转移方程
		dp[i] = max(A[i],dp[i-1] + A[i]); 
	} 
	
	
	//dp[i]存放一A[i]结尾的连续序列的最大和,遍历dp[n]找到最大值 
	int k = 0;
	for(int i =1; i < n; i++){
		if(dp[i] > dp[k]){
			k = i;
		}
	}
	printf("%d",dp[k]);
	return 0;
} 

输入数据:

6
-2 11 -4 13 -5 -2

输出结果:

20
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fomharun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值