完整源代码项目地址,关注博主私信'源代码'后可获取
1.问题描述
现输入一个真分数,请将该分数分解为埃及分数。
2.问题分析
真分数(a proper fraction)是指分子比分母小的分数,其分数值小于1。如1/2、3/5、8/9等都是真分数。
分子是1的分数,叫单位分数。古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫作埃及分数,或者叫单分子分数。例如,8/11=1/2+1/5+1/55+1/110。
我们约定分子分母都是自然数,分数的分子用a表示,分母用b表示。若真分数的分子a能整除分母b,则真分数经过化简就可以得到埃及分数,若真分数的分子不能整除分母,则可以从原来的分数中分解出一个分母为(b/a)+1的埃及分数。用这种方法将剩余部分反复分解,最后可得到结果。
3.算法设计
真分数分解为埃及分数的思路可归纳如下:
1)分数的分子用a表示、分母用b表示,变量c用来存储各个埃及分数的分母。
2)如果分母是分子的倍数,直接约简成埃及分数。此时,埃及分数的分母c=b/a,分子为1,即直接将变量a赋值为1。
3)若分母不是分子的倍数,则可以分解出一个分母为(b/a)+1的埃及分数,即变量c的值为(b/a)+1。
4)如果分子是1,表明已经是埃及分数,不用再分解,分解过程结束。
如果分数的分子a为1,则说明此时的分数已经是埃及分数,无须再分解,可结束循环。对于这种不受循环条件限制,当某一条件满足时便可结束循环的情况,可用break语句实现。
if a == 1:
print("1/%ld\n" %c, end="")
break
5)如果分子是3而且分母是偶数,直接分解成两个埃及分数1/(b/2)和1/b。
因分母为偶数,故变量b一定是2的倍数,对于分解出来的分数1/(b/2)经过约分之后肯定能得到一个埃及分数。原分数分解为两个埃及分数之后便可利用break语句结束循环。
if a == 3 and b % 2 == 0:
print("1/%ld + 1/%ld\n" %(b//2,