Description
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input
5 1 2 1 1 3 2 1 4 1 2 5 3
Sample Output
13/25 【样例说明】 13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。 【数据规模】对于100%的数据,n<=20000。
简单的树分治,不过也可以直接树上dp解决。
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; typedef unsigned long long LL; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int maxn = 1e5 + 10; int n, m, x, y, z; int ft[maxn], nt[maxn], u[maxn], v[maxn], sz; int vis[maxn], cnt[maxn], mx[maxn], dis[maxn], tot; void AddEdge(int x, int y, int z) { u[sz] = y; v[sz] = z; nt[sz] = ft[x]; ft[x] = sz++; } void clear(int x) { sz = 0; mx[0] = INF; for (int i = 1; i <= x; i++) { ft[i] = -1; vis[i] = 0; } } int dfs(int x, int fa, int sum) { int ans = 0; cnt[x] = 1; mx[x] = 0; for (int i = ft[x]; i != -1; i = nt[i]) { if (u[i] == fa || vis[u[i]]) continue; int k = dfs(u[i], x, sum); cnt[x] += cnt[u[i]]; mx[x] = max(mx[x], cnt[u[i]]); if (mx[k] < mx[ans]) ans = k; } mx[x] = max(mx[x], sum - cnt[x]); return mx[x] < mx[ans] ? x : ans; } void dfsdis(int x, int fa, int len) { ++dis[len % 3]; for (int i = ft[x]; i != -1; i = nt[i]) { if (vis[u[i]] || u[i] == fa) continue; dfsdis(u[i], x, (len + v[i]) % 3); } } int find(int x, int len) { for (int i = 0; i < 3; i++) dis[i] = 0; dfsdis(x, -1, len); return dis[0] * dis[0] + 2 * dis[1] * dis[2]; } int solve(int x, int sum) { int y = dfs(x, -1, sum), ans = find(y, 0); vis[y] = 1; for (int i = ft[y]; i != -1; i = nt[i]) { if (!vis[u[i]]) { ans -= find(u[i], v[i]); if (cnt[u[i]] < cnt[y]) ans += solve(u[i], cnt[u[i]]); else ans += solve(u[i], sum - cnt[y]); } } return ans; } int gcd(int x, int y) { return x%y ? gcd(y, x%y) : y; } int main() { while (scanf("%d", &n) != EOF) { clear(n); for (int i = 1; i < n; i++) { scanf("%d%d%d", &x, &y, &z); AddEdge(x, y, z); AddEdge(y, x, z); } x = solve(1, n); y = n*n; z = gcd(x, y); printf("%d/%d\n", x / z, y / z); } return 0; }