HYSBZ 2152 聪聪可可

Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

Sample Input

5
1 2 1
1 3 2
1 4 1
2 5 3

Sample Output

13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】

对于100%的数据,n<=20000。

简单的树分治,不过也可以直接树上dp解决。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef unsigned long long LL;
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 10;
int n, m, x, y, z;
int ft[maxn], nt[maxn], u[maxn], v[maxn], sz;
int vis[maxn], cnt[maxn], mx[maxn], dis[maxn], tot;

void AddEdge(int x, int y, int z)
{
	u[sz] = y;	v[sz] = z; nt[sz] = ft[x]; ft[x] = sz++;
}

void clear(int x)
{
	sz = 0;	mx[0] = INF;
	for (int i = 1; i <= x; i++)
	{
		ft[i] = -1;	vis[i] = 0;
	}
}

int dfs(int x, int fa, int sum)
{
	int ans = 0;
	cnt[x] = 1;	 mx[x] = 0;
	for (int i = ft[x]; i != -1; i = nt[i])
	{
		if (u[i] == fa || vis[u[i]]) continue;
		int k = dfs(u[i], x, sum);
		cnt[x] += cnt[u[i]];
		mx[x] = max(mx[x], cnt[u[i]]);
		if (mx[k] < mx[ans]) ans = k;
	}
	mx[x] = max(mx[x], sum - cnt[x]);
	return mx[x] < mx[ans] ? x : ans;
}

void dfsdis(int x, int fa, int len)
{
	++dis[len % 3];
	for (int i = ft[x]; i != -1; i = nt[i])
	{
		if (vis[u[i]] || u[i] == fa) continue;
		dfsdis(u[i], x, (len + v[i]) % 3);
	}
}

int find(int x, int len)
{
	for (int i = 0; i < 3; i++) dis[i] = 0;
	dfsdis(x, -1, len);
	return dis[0] * dis[0] + 2 * dis[1] * dis[2];
}

int solve(int x, int sum)
{
	int y = dfs(x, -1, sum), ans = find(y, 0);
	vis[y] = 1;
	for (int i = ft[y]; i != -1; i = nt[i])
	{
		if (!vis[u[i]])
		{
			ans -= find(u[i], v[i]);
			if (cnt[u[i]] < cnt[y]) ans += solve(u[i], cnt[u[i]]);
			else ans += solve(u[i], sum - cnt[y]);
		}
	}
	return ans;
}

int gcd(int x, int y)
{
	return x%y ? gcd(y, x%y) : y;
}

int main()
{
	while (scanf("%d", &n) != EOF)
	{
		clear(n);
		for (int i = 1; i < n; i++)
		{
			scanf("%d%d%d", &x, &y, &z);
			AddEdge(x, y, z);
			AddEdge(y, x, z);
		}
		x = solve(1, n);	y = n*n;	z = gcd(x, y);
		printf("%d/%d\n", x / z, y / z);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值