Description
The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.
Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.
Input
The input consists of multiple test cases. Each test case contains exactly one line, which
gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.
The last test case is followed by a line containing a '#'.
Output
For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.
Sample Input
ccabababc daabbccaa #
Sample Output
Case 1: abababCase 2: aa
找出循环次数最多的子串,后缀数组+rmq计算lcp,然后枚举长度,统计前后最远距离。
#include<set> #include<map> #include<ctime> #include<cmath> #include<stack> #include<queue> #include<bitset> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define rep(i,j,k) for (int i = j; i <= k; i++) #define per(i,j,k) for (int i = j; i >= k; i--) #define lson x << 1, l, mid #define rson x << 1 | 1, mid + 1, r #define fi first #define se second #define mp(i,j) make_pair(i,j) #define pii pair<int,int> using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const double eps = 1e-8; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 1e5 + 10; const int read() { char ch = getchar(); while (ch<'0' || ch>'9') ch = getchar(); int x = ch - '0'; while ((ch = getchar()) >= '0'&&ch <= '9') x = x * 10 + ch - '0'; return x; } int cas = 0; struct Sa { char s[N]; int rk[2][N], sa[N], h[N], w[N], now, n; int rmq[N][20], lg[N]; bool GetS() { return scanf("%s", s + 1), s[1] != '#'; } void getsa(int z, int &m) { int x = now, y = now ^= 1; rep(i, 1, z) rk[y][i] = n - i + 1; for (int i = 1, j = z; i <= n; i++) if (sa[i] > z) rk[y][++j] = sa[i] - z; rep(i, 1, m) w[i] = 0; rep(i, 1, n) w[rk[x][rk[y][i]]]++; rep(i, 1, m) w[i] += w[i - 1]; per(i, n, 1) sa[w[rk[x][rk[y][i]]]--] = rk[y][i]; for (int i = m = 1; i <= n; i++) { int *a = rk[x] + sa[i], *b = rk[x] + sa[i - 1]; rk[y][sa[i]] = *a == *b&&*(a + z) == *(b + z) ? m - 1 : m++; } } void getsa(int m) { now = 0; n = strlen(s + 1); rep(i, 1, m) w[i] = 0; rep(i, 1, n) w[s[i]]++; rep(i, 1, m) rk[1][i] = rk[1][i - 1] + (bool)w[i]; rep(i, 1, m) w[i] += w[i - 1]; rep(i, 1, n) rk[0][i] = rk[1][s[i]]; rep(i, 1, n) sa[w[s[i]]--] = i; for (int x = 1, y = rk[1][m]; x <= n && y <= n; x <<= 1) getsa(x, y); for (int i = 1, j = 0; i <= n; h[rk[now][i++]] = j ? j-- : 0) while (s[sa[rk[now][i] - 1] + j] == s[i + j]) ++j; } void getrmq() { lg[1] = 0; rep(i, 2, n) rmq[i][0] = h[i], lg[i] = lg[i >> 1] + 1; for (int i = 1; (1 << i) <= n; i++) { rep(j, 2, n) { if (j + (1 << i) > n + 1) break; rmq[j][i] = min(rmq[j][i - 1], rmq[j + (1 << i - 1)][i - 1]); } } } int lcp(int x, int y) { int l = min(rk[now][x], rk[now][y]) + 1, r = max(rk[now][x], rk[now][y]); return min(rmq[l][lg[r - l + 1]], rmq[r - (1 << lg[r - l + 1]) + 1][lg[r - l + 1]]); } void work() { getsa(255); getrmq(); int t = 0, st = 0, len; rep(i, 1, n) { for (int j = 1; j + i <= n; j += i) { int L = lcp(j, j + i); if (L % i && j > i - L%i) { int R = lcp(j - i + L%i, j + L%i); if (R / i > L / i) { for (int k = j - i + L%i; k > j - i && k > 0; k--) { R = lcp(k, k + i); if (t < R / i + 1) { t = R / i + 1; st = k; len = i; } else if (t == R / i + 1) { if (rk[now][st] > rk[now][k]) st = k, len = i; } else break; } } } for (int k = j; k > j - i && k > 0; k--) { L = lcp(k, k + i); if (t < L / i + 1) { t = L / i + 1; st = k; len = i; } else if (t == L / i + 1) { if (rk[now][st] > rk[now][k]) st = k, len = i; } else break; } } } printf("Case %d: ", ++cas); rep(i, 1, t) rep(j, 1, len) printf("%c", s[st + (i - 1)*len + j - 1]); putchar(10); } }sa; int main() { while (sa.GetS()) sa.work(); return 0; }